login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218320
Number of ways to write n as n = a*b*c*d with 1 <= a <= b <= c <= d <= n.
11
1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 6, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 11, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 9, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 11, 5, 2, 1, 11, 2
OFFSET
1,4
COMMENTS
Starts the same as, but is different from A001055. First values of n such that a(n) differs from A001055(n) are 32, 48, 64, 72, 80, ... .
The value of a is the same for all numbers n with the same prime signature. For prime p we have a(p^n) = A001400(n), the number of partitions of n into at most 4 parts. - Alois P. Heinz, Nov 03 2012
LINKS
EXAMPLE
a(12) = 4 because we can write 12 = 1*1*1*12 = 1*1*2*6 = 1*1*3*4 = 1*2*2*3.
MAPLE
for n from 1 to 90 do:t1:=0: for a from 1 to n do: for b from a to n do :for c from b to n do : for d from c to n do :if a*b*c*d = n then t1:=t1+1: else fi: od: od: od: od:printf(`%d, `, t1):od:
# second Maple program
with(numtheory):
b:= proc(n, i, t) option remember;
`if`(n=1, 1, `if`(t=1, `if`(n<=i, 1, 0),
add(b(n/d, d, t-1), d=select(x->x<=i, divisors(n)))))
end:
a:= proc(n) local l, m;
l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
b(m, m, 4)
end:
seq(a(n), n=1..100); # Alois P. Heinz, Nov 03 2012
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n==1, 1, If[t==1, If[n <= i, 1, 0], Sum[b[n/d, d, t-1], {d, Select[Divisors[n], # <= i&]}]]];
a[n_] := (l = Sort[FactorInteger[n], #1[[2]] > #2[[2]]&]; m = Times @@ Power @@@ l; b[m, m, 4]);
Array[a, 100] (* Jean-François Alcover, Mar 22 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A317791 A318559 A326334 * A355030 A305254 A252665
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 25 2012
STATUS
approved