Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 22 2017 11:17:40
%S 1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5,1,4,1,4,2,2,1,7,2,2,3,4,1,5,1,6,2,2,
%T 2,9,1,2,2,7,1,5,1,4,4,2,1,11,2,4,2,4,1,7,2,7,2,2,1,11,1,2,4,9,2,5,1,
%U 4,2,5,1,15,1,2,4,4,2,5,1,11,5,2,1,11,2
%N Number of ways to write n as n = a*b*c*d with 1 <= a <= b <= c <= d <= n.
%C Starts the same as, but is different from A001055. First values of n such that a(n) differs from A001055(n) are 32, 48, 64, 72, 80, ... .
%C The value of a is the same for all numbers n with the same prime signature. For prime p we have a(p^n) = A001400(n), the number of partitions of n into at most 4 parts. - _Alois P. Heinz_, Nov 03 2012
%H Alois P. Heinz, <a href="/A218320/b218320.txt">Table of n, a(n) for n = 1..10000</a>
%e a(12) = 4 because we can write 12 = 1*1*1*12 = 1*1*2*6 = 1*1*3*4 = 1*2*2*3.
%p for n from 1 to 90 do:t1:=0: for a from 1 to n do: for b from a to n do :for c from b to n do : for d from c to n do :if a*b*c*d = n then t1:=t1+1: else fi: od: od: od: od:printf(`%d, `,t1):od:
%p # second Maple program
%p with(numtheory):
%p b:= proc(n, i, t) option remember;
%p `if`(n=1, 1, `if`(t=1, `if`(n<=i, 1, 0),
%p add(b(n/d, d, t-1), d=select(x->x<=i, divisors(n)))))
%p end:
%p a:= proc(n) local l, m;
%p l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
%p m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
%p b(m, m, 4)
%p end:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Nov 03 2012
%t b[n_, i_, t_] := b[n, i, t] = If[n==1, 1, If[t==1, If[n <= i, 1, 0], Sum[b[n/d, d, t-1], {d, Select[Divisors[n], # <= i&]}]]];
%t a[n_] := (l = Sort[FactorInteger[n], #1[[2]] > #2[[2]]&]; m = Times @@ Power @@@ l; b[m, m, 4]);
%t Array[a, 100] (* _Jean-François Alcover_, Mar 22 2017, after _Alois P. Heinz_ *)
%Y Cf. A001055, A034836.
%K nonn
%O 1,4
%A _Michel Lagneau_, Oct 25 2012