Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 25 2023 09:28:54
%S 1,0,0,1,1,3,7,16,40,98,246,624,1596,4120,10708,28009,73673,194743,
%T 517067,1378365,3687665,9898417,26649117,71943947,194717215,528236599,
%U 1436122339,3912244667,10677558423,29192753795,79944089343,219261036592,602226736360
%N Number of lattice paths from (0,0) to (n,n) which do not go above the diagonal x=y using steps (1,k), (k,1) with k>=2.
%H Alois P. Heinz, <a href="/A263316/b263316.txt">Table of n, a(n) for n = 0..1000</a>
%e a(0) = 1: [(0,0)].
%e a(3) = 1: [(0,0),(2,1),(3,3)].
%e a(4) = 1: [(0,0),(3,1),(4,4)].
%e a(5) = 3: [(0,0),(3,1),(4,3),(5,5)], [(0,0),(2,1),(4,2),(5,5)], [(0,0),(4,1),(5,5)].
%e a(6) = 7: [(0,0),(2,1),(3,3),(5,4),(6,6)], [(0,0),(2,1),(4,2),(5,4),(6,6)], [(0,0),(4,1),(5,4),(6,6)], [(0,0),(4,1),(5,3),(6,6)], [(0,0),(3,1),(5,2),(6,6)], [(0,0),(2,1),(5,2),(6,6)], [(0,0),(5,1),(6,6)].
%p a:= proc(n) option remember; `if`(n<5, [1, 0$2, 1$2][n+1],
%p ((n-3)*a(n-1) +(5*n-5)*a(n-2) +(3*n-3)*a(n-3)
%p -(4*n-20)*a(n-4) -(4*n-16)*a(n-5))/(n+1))
%p end:
%p seq(a(n), n=0..40);
%t a[n_] := a[n] = If[n < 5, {1, 0, 0, 1, 1}[[n+1]], ((n-3)a[n-1] + (5n-5)a[n-2] + (3n-3)a[n-3] - (4n-20)a[n-4] - (4n-16)a[n-5])/(n+1)];
%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Oct 25 2023, after _Alois P. Heinz_ *)
%Y Cf. A014137, A082582, A168592, A218321.
%K nonn
%O 0,6
%A _Alois P. Heinz_, Oct 14 2015