login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A103440
a(n) = Sum[d|n, d==1 (mod 3), d^2] - Sum[d|n, d==2 (mod 3), d^2].
3
1, -3, 1, 13, -24, -3, 50, -51, 1, 72, -120, 13, 170, -150, -24, 205, -288, -3, 362, -312, 50, 360, -528, -51, 601, -510, 1, 650, -840, 72, 962, -819, -120, 864, -1200, 13, 1370, -1086, 170, 1224, -1680, -150, 1850, -1560, -24, 1584, -2208, 205, 2451, -1803, -288, 2210, -2808, -3, 2880, -2550
OFFSET
1,2
LINKS
G. E. Andrews and B. C. Berndt, Your Hit Parade: The Top Ten Most Fascinating Formulas in Ramanujan's Lost Notebook, Notices Amer. Math. Soc., 55 (No. 1, 2008), 18-30. See p. 23, Equation (27).
J. Stienstra, Mahler measure, Eisenstein series and dimers, arXiv:math/0502197 [math.NT], 2005.
FORMULA
G.f.: F(q) = Sum_{n>=1} A049347(n-1) * n^2 * q^n / (1 - q^n).
G.f.: F(q) = -q * G'(q) / (9*G(q)), with G(q) = Product_{n>=1} (1 - q^n)^(9*n * A049347(n-1)).
a(n) is multiplicative with a(3^e) = 1, a(p^e) = a(p) * a(p^(e-1)) - z * a(p^(e-2)) where z = Kronecker(-3, p) * p^2 and a(p) = z + 1.
a(3*n) = a(n).
G.f.: Sum_{k>0} x^k * (1 - x^k - 6*x^(2*k) - x^(3*k) + x^(4*k)) / (1 + x^k + x^(2*k))^3. - Michael Somos, Oct 21 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u^2 - v + w + 3*v^2 - 8*w^2 + 6*v*w - 8*u*w + 6*u*v - 9*v^3 - 54*u*v*w + 72*u*w^2 - 9*u^2*w. - Michael Somos, Dec 23 2007
EXAMPLE
G.f. = q - 3*q^2 + q^3 + 13*q^4 - 24*q^5 - 3*q^6 + 50*q^7 - 51*q^8 + q^9 + ...
MAPLE
f:= proc(n) local D, d;
D:= numtheory:-divisors(n/3^padic:-ordp(n, 3));
-add((-1)^(d mod 3)*d^2, d = D)
end proc:
map(f, [$1..100]); # Robert Israel, Aug 16 2018
MATHEMATICA
a[n_] := Sum[m=Mod[d, 3]; (Boole[m==1]-Boole[m==2]) d^2, {d, Divisors[n]}];
Array[a, 56] (* Jean-François Alcover, Aug 16 2018 *)
a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ x]^9 / QPochhammer[ x^3]^3) / 9, {x, 0, n}]; (* Michael Somos, Sep 07 2018 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, d, d^2 * kronecker( -3, d)))}; /* Michael Somos, Oct 21 20007 */
(PARI) {a(n) = my(A, p, e, a0, a1, x, y, z); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, 1, z = kronecker( -3, p) * p^2; a0 = 1; a1 = y = z + 1; for(i=2, e, x = y * a1 - z * a0; a0 = a1; a1 = x); a1)))}; /* Michael Somos, Oct 21 20007 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^9 / eta(x^3 + A)^3) / 9, n))}; /* Michael Somos, Oct 21 20007 */
CROSSREFS
Equals A103637(n) - A103638(n). Cf. A002173.
A109041(n) = -9 * a(n) unless n=0. A014985(n) = a(2^n). -24 * A134340(n) = a(6*n+5).
Sequence in context: A331998 A053286 A008826 * A116483 A262593 A010290
KEYWORD
sign,mult
AUTHOR
Ralf Stephan, Feb 11 2005
STATUS
approved