login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116483
Expansion of (1 + x) / (5*x^2 - 2*x + 1).
3
1, 3, 1, -13, -31, 3, 161, 307, -191, -1917, -2879, 3827, 22049, 24963, -60319, -245453, -189311, 848643, 2643841, 1044467, -11130271, -27482877, 685601, 138785587, 274143169, -145641597, -1661999039, -2595790093, 3118415009, 19215780483
OFFSET
0,2
COMMENTS
Binomial transform of signed powers of 2: (1, 2, -4, -8, 16, 32, -64, -128, ...).
Inverse binonomial transform of (1, 4, 8, 0, -64, -256, -512, 0, 4096, 16384, 32768, 0, -262144, -1048576, -2097152, 0, ...).
G.f.*(1-x)/(1+x) (i.e, convolution with 1,-2,2,-2,2,-2, ... ) yields A006495.
Floretion Algebra Multiplication Program, FAMP Code: 2ibaseforseq[A*B] with A = - .5'i + .5'j - .5i' + .5j' + 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj' and B = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' ;
FORMULA
a(n) = 2*a(n-1) -5*a(n-2). - Paul Curtz, Apr 18 2011
a(n) = (1/2 + i/2)*((1 - 2*i)^n - i*(1 + 2*i)^n) where i=sqrt(-1). - Colin Barker, Aug 25 2017
PROG
(PARI) a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1, #v, real(v[k])+imag(v[k])); }
/* cf. A138749 */ /* Joerg Arndt, Jul 06 2011 */
(PARI) Vec((1 + x) / (5*x^2 - 2*x + 1) + O(x^50)) \\ Colin Barker, Aug 25 2017
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Creighton Dement, Feb 17 2006
STATUS
approved