login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 + x) / (5*x^2 - 2*x + 1).
3

%I #34 Mar 06 2024 15:45:12

%S 1,3,1,-13,-31,3,161,307,-191,-1917,-2879,3827,22049,24963,-60319,

%T -245453,-189311,848643,2643841,1044467,-11130271,-27482877,685601,

%U 138785587,274143169,-145641597,-1661999039,-2595790093,3118415009,19215780483

%N Expansion of (1 + x) / (5*x^2 - 2*x + 1).

%C Binomial transform of signed powers of 2: (1, 2, -4, -8, 16, 32, -64, -128, ...).

%C Inverse binonomial transform of (1, 4, 8, 0, -64, -256, -512, 0, 4096, 16384, 32768, 0, -262144, -1048576, -2097152, 0, ...).

%C G.f.*(1-x)/(1+x) (i.e, convolution with 1,-2,2,-2,2,-2, ... ) yields A006495.

%C Floretion Algebra Multiplication Program, FAMP Code: 2ibaseforseq[A*B] with A = - .5'i + .5'j - .5i' + .5j' + 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj' and B = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki' ;

%H Colin Barker, <a href="/A116483/b116483.txt">Table of n, a(n) for n = 0..1000</a>

%H J. Riordan, <a href="http://www.jstor.org/stable/2005477">The distribution of crossings of chords joining pairs of 2n points on a circle</a>, Math. Comp., 29 (1975), 215-222.

%H J. Riordan, <a href="/A003480/a003480.pdf">The distribution of crossings of chords joining pairs of 2n points on a circle</a>, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-5).

%F a(n) = 2*a(n-1) -5*a(n-2). - _Paul Curtz_, Apr 18 2011

%F a(n) = (1/2 + i/2)*((1 - 2*i)^n - i*(1 + 2*i)^n) where i=sqrt(-1). - _Colin Barker_, Aug 25 2017

%o (PARI) a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])+imag(v[k]));}

%o /* cf. A138749 */ /* _Joerg Arndt_, Jul 06 2011 */

%o (PARI) Vec((1 + x) / (5*x^2 - 2*x + 1) + O(x^50)) \\ _Colin Barker_, Aug 25 2017

%Y Cf. A000079, A006495, A116484.

%K easy,sign

%O 0,2

%A _Creighton Dement_, Feb 17 2006