login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138749
a(n) = 2*a(n-1) - 5*a(n-2).
1
-1, -7, -9, 17, 79, 73, -249, -863, -481, 3353, 9111, 1457, -42641, -92567, 28071, 518977, 897599, -799687, -6087369, -8176303, 14084239, 69049993, 67678791, -209892383, -758178721, -466895527, 2857102551, 8048682737, 1811852719, -36619708247
OFFSET
1,2
FORMULA
a(n) = 2*a(n-1) - 5*a(n-2), n>3.
a(n) = left term in [1,-2; 2,1]^n * [1,1].
O.g.f.: -x*(1+5*x)/(1-2*x+5*x^2). a(n)=-A045873(n)-5*A045873(n-1). - R. J. Mathar, Apr 03 2008
a(n) = (1/2)*(1+i)*((1+2*i)^n-i*(1-2*i)^n), where i=sqrt(-1). - Bruno Berselli, Jul 06 2011
EXAMPLE
a(5) = 79 = 2*a(4) - 5*a(3) = 2*17 - 5*(-9).
a(5) = 79 = left term in [1,-2, 2,1]^5.
PROG
(PARI) a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1, #v, real(v[k])-imag(v[k])); } /* cf. A116483 */ /* Joerg Arndt, Jul 06 2011 */
CROSSREFS
Sequence in context: A255830 A256613 A116484 * A320700 A053803 A320323
KEYWORD
sign,easy
AUTHOR
Gary W. Adamson, Mar 28 2008
STATUS
approved