login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*a(n-1) - 5*a(n-2).
1

%I #13 Jul 11 2020 02:32:50

%S -1,-7,-9,17,79,73,-249,-863,-481,3353,9111,1457,-42641,-92567,28071,

%T 518977,897599,-799687,-6087369,-8176303,14084239,69049993,67678791,

%U -209892383,-758178721,-466895527,2857102551,8048682737,1811852719,-36619708247

%N a(n) = 2*a(n-1) - 5*a(n-2).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-5).

%F a(n) = 2*a(n-1) - 5*a(n-2), n>3.

%F a(n) = left term in [1,-2; 2,1]^n * [1,1].

%F O.g.f.: -x*(1+5*x)/(1-2*x+5*x^2). a(n)=-A045873(n)-5*A045873(n-1). - _R. J. Mathar_, Apr 03 2008

%F a(n) = (1/2)*(1+i)*((1+2*i)^n-i*(1-2*i)^n), where i=sqrt(-1). - _Bruno Berselli_, Jul 06 2011

%e a(5) = 79 = 2*a(4) - 5*a(3) = 2*17 - 5*(-9).

%e a(5) = 79 = left term in [1,-2, 2,1]^5.

%o (PARI) a(n)={local(v=Vec((1+2*I*x)^n)); sum(k=1,#v, real(v[k])-imag(v[k]));} /* cf. A116483 */ /* _Joerg Arndt_, Jul 06 2011 */

%K sign,easy

%O 1,2

%A _Gary W. Adamson_, Mar 28 2008