|
|
A116486
|
|
Numbers k such that both k and k + 1 are logarithmically smooth.
|
|
3
|
|
|
8, 24, 80, 125, 224, 2400, 3024, 4224, 4374, 6655, 9800, 10647, 123200, 194480, 336140, 601425, 633555, 709631, 5142500, 5909760, 11859210, 1611308699
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
N is logarithmically smooth if its largest prime factor p <= ceiling(log_2(n)).
Is the sequence finite?
No more terms with largest prime factor <= 47. - Joerg Arndt, Jul 02 2012
|
|
LINKS
|
Table of n, a(n) for n=1..22.
Discussion titled Special Smooth numbers, (postings in mersenneforum.org), starting March 20 2006.
|
|
EXAMPLE
|
125 is in the sequence because 125 = 5 * 5 * 5, 126 = 2 * 3 * 3 * 7; no prime factor is greater than ceiling(log_2(125)) = 7.
|
|
MATHEMATICA
|
logCeilSmoothQ[n_, b_:E] := FactorInteger[n][[-1, 1]] <= Ceiling[Log[b, n]]; Select[Range[10000], logCeilSmoothQ[#, 2] && logCeilSmoothQ[# + 1, 2] &] (* Alonso del Arte, Nov 27 2019 *)
|
|
PROG
|
(PARI)
fm=97; /* max factor for factorizing, 2^97 >= searchlimit */
lpf(n)={ vecmax(factor(n, fm)[, 1]) } /* largest prime factor */
lsm(n)=if ( lpf(n)<=#binary(n-1), 1, 0 ); /* whether log-smooth, for n>=2 */
n0=3; /* lower search limit */
l1=lsm(n0-1);
{ for (n=n0, 10^10,
l0 = lsm(n);
if ( l0 && l1, print1(n-1, ", ") );
l1 = l0;
); }
/* Joerg Arndt, Jul 02 2012 */
|
|
CROSSREFS
|
Sequence in context: A303402 A078158 A221906 * A179609 A241690 A141317
Adjacent sequences: A116483 A116484 A116485 * A116487 A116488 A116489
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Harsh R. Aggarwal, Mar 20 2006
|
|
EXTENSIONS
|
Edited by Don Reble, Apr 07 2006
|
|
STATUS
|
approved
|
|
|
|