login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084949
a(n) = Product_{i=0..n-1} (9*i+2).
13
1, 2, 22, 440, 12760, 484880, 22789360, 1276204160, 82953270400, 6138542009600, 509498986796800, 46873906785305600, 4734264585315865600, 520769104384745216000, 61971523421784680704000, 7932354997988439130112000, 1086732634724416160825344000, 158662964669764759480500224000
OFFSET
0,2
LINKS
FORMULA
a(n) = A084944(n)/A000142(n)*A000079(n) = 9^n*Pochhammer(2/9, n) = 9^n*Gamma(n+2/9)/Gamma(2/9).
a(n) = (-7)^n*Sum_{k=0..n} (9/7)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
E.g.f.: (1-9*x)^(-2/9). - Robert Israel, Mar 22 2017
D-finite with recurrence: a(n) +(-9*n+7)*a(n-1)=0. - R. J. Mathar, Jan 20 2020
Sum_{n>=0} 1/a(n) = 1 + (e/9^7)^(1/9)*(Gamma(2/9) - Gamma(2/9, 1/9)). - Amiram Eldar, Dec 21 2022
MAPLE
a:= n-> product(9*i+2, i=0..n-1); seq(a(j), j=0..20);
MATHEMATICA
Table[9^n*Pochhammer[2/9, n], {n, 0, 20}] (* G. C. Greubel, Aug 19 2019 *)
PROG
(PARI) vector(20, n, n--; prod(k=0, n-1, 9*k+2)) \\ G. C. Greubel, Aug 19 2019
(Magma) [1] cat [(&*[9*k+2: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 19 2019
(Sage) [product(9*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
(GAP) List([0..20], n-> Product([0..n-1], k-> 9*k+2) ); # G. C. Greubel, Aug 19 2019
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
STATUS
approved