OFFSET
0,2
LINKS
Robert Israel, Table of n, a(n) for n = 0..329
FORMULA
a(n) = (-7)^n*Sum_{k=0..n} (9/7)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
E.g.f.: (1-9*x)^(-2/9). - Robert Israel, Mar 22 2017
D-finite with recurrence: a(n) +(-9*n+7)*a(n-1)=0. - R. J. Mathar, Jan 20 2020
Sum_{n>=0} 1/a(n) = 1 + (e/9^7)^(1/9)*(Gamma(2/9) - Gamma(2/9, 1/9)). - Amiram Eldar, Dec 21 2022
MAPLE
a:= n-> product(9*i+2, i=0..n-1); seq(a(j), j=0..20);
MATHEMATICA
Table[9^n*Pochhammer[2/9, n], {n, 0, 20}] (* G. C. Greubel, Aug 19 2019 *)
PROG
(PARI) vector(20, n, n--; prod(k=0, n-1, 9*k+2)) \\ G. C. Greubel, Aug 19 2019
(Magma) [1] cat [(&*[9*k+2: k in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 19 2019
(Sage) [product(9*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 19 2019
(GAP) List([0..20], n-> Product([0..n-1], k-> 9*k+2) ); # G. C. Greubel, Aug 19 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
STATUS
approved