OFFSET
0,2
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..340
FORMULA
D-finite with recurrence a(0) = 1; a(n) = (7*n - 5)*a(n-1) for n > 0. - Klaus Brockhaus, Nov 10 2008
G.f.: 1/(1-2*x/(1-7*x/(1-9*x/(1-14*x/(1-16*x/(1-21*x/(1-23*x/(1-28*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-5)^n*Sum_{k=0..n} (7/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 7*x)^(2/7).
a(n) ~ sqrt(2*Pi)*7^n*n^n/(exp(n)*n^(3/14)*Gamma(2/7)). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/7^5)^(1/7)*(Gamma(2/7) - Gamma(2/7, 1/7)). - Amiram Eldar, Dec 19 2022
MAPLE
a := n->product(7*i+2, i=0..n-1); [seq(a(j), j=0..30)];
MATHEMATICA
Join[{1}, FoldList[Times, 7*Range[0, 15]+2]] (* Harvey P. Dale, Nov 27 2015 *)
Table[7^n*Pochhammer[2/7, n], {n, 0, 15}] (* G. C. Greubel, Aug 18 2019 *)
PROG
(Magma) [ 1 ] cat [ &*[ (7*k+2): k in [0..n-1] ]: n in [1..15] ]; // Klaus Brockhaus, Nov 10 2008
(PARI) vector(20, n, n--; prod(k=0, n-1, 7*k+2)) \\ G. C. Greubel, Aug 18 2019
(Sage) [product(7*k+2 for k in (0..n-1)) for n in (0..20)] # G. C. Greubel, Aug 18 2019
(GAP) List([0..20], n-> Product([0..n-1], k-> 7*k+2) ); # G. C. Greubel, Aug 18 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
EXTENSIONS
a(15) from Klaus Brockhaus, Nov 10 2008
STATUS
approved