login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131455
Number of inequivalent properly oriented and labeled planar chord diagrams whose associated planar tree is a path on n + 1 vertices.
4
1, 2, 18, 284, 7280, 273246, 14144592, 965491288, 84027112704, 9081387766810, 1193283000239616, 187340544144604212, 34633340434838499328, 7446726867419368499894, 1842612127654047957411840, 519870106084045866346942256, 165896395346243470375430193152, 59450668490817059243377908811698, 23773400714993519201980928470155264
OFFSET
1,2
COMMENTS
a(n) = n times the number of "2 up, 2 down" permutations of length 2*n-1 = n*A005981(n-1) for n >= 2.
a(n) ~ (c_1)*n*(2*n - 1)!/(c_2)^(2n), where c_1 is a constant and c_2 = 1.87510... is the smallest positive solution of the equation cos(z)* cosh(z) + 1 = 0.
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values, arXiv:math/0209062 [math.AG], 2002.
B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values, Moscow Math. J., 3 (2003), 647-659.
Eric Weisstein's World of Mathematics, Generalized Hyperbolic Functions.
FORMULA
E.g.f.: Sum_{n >= 1} a(n)*(x^(2*n))/(2*n)! = (x/2)*(f(0,x)*f(1,x) - f(2,x)*f(3,x) + f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k >= 0} (x^(4*k + j))/(4*k + j)!, j = 0, 1, 2, 3, is the j-th generalized hyperbolic function.
EXAMPLE
From Petros Hadjicostas, Jul 25 2020: (Start)
For n = 2, the a(2)/2 = 1 "2 up, 2 down" permutation of length 2*2 - 1 = 3 is the following:
3
/
2
/
1
For n = 3, the a(3)/3 = 6 "2 up, 2 down" permutations of length 2*3 - 1 = 5 are the following:
5 5 5 5 5 5
/ \ / \ / \ / \ / \ / \
3 4 4 3 2 4 3 4 4 3 4 2
/ \ / \ / \ / \ / \ / \
1 2 1 2 1 3 2 1 2 1 3 1
(End)
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(
`if`(t=2, b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))
end:
a:= n-> n*b(0, 2*n-1, 0):
seq(a(n), n=1..19); # Alois P. Heinz, Nov 23 2021
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 2,
b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];
a[n_] := n*b[0, 2*n - 1, 0];
Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Mar 07 2022, after Alois P. Heinz *)
PROG
(PARI) f(j, x, nn) = sum(k=0, 2*nn, (x^(4*k + j))/(4*k + j)!);
g(x, nn) = (x/2)*(f(0, x, nn)*f(1, x, nn) - f(2, x, nn)*f(3, x, nn) + f(3, x, nn))/(f(0, x, nn)^2 - f(1, x, nn)*f(3, x, nn));
lista(nn) = {default(seriesprecision, 2*nn); my(a=vector(nn)); for(n=1, nn, a[n] = (2*n)!*polcoef(Ser(g(x, nn)), 2*n)); a; } \\ Petros Hadjicostas, Jul 25 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Jul 13 2007
EXTENSIONS
More terms from Petros Hadjicostas, Jul 25 2020
STATUS
approved