login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of inequivalent properly oriented and labeled planar chord diagrams whose associated planar tree is a path on n + 1 vertices.
4

%I #35 Mar 07 2022 07:55:12

%S 1,2,18,284,7280,273246,14144592,965491288,84027112704,9081387766810,

%T 1193283000239616,187340544144604212,34633340434838499328,

%U 7446726867419368499894,1842612127654047957411840,519870106084045866346942256,165896395346243470375430193152,59450668490817059243377908811698,23773400714993519201980928470155264

%N Number of inequivalent properly oriented and labeled planar chord diagrams whose associated planar tree is a path on n + 1 vertices.

%C a(n) = n times the number of "2 up, 2 down" permutations of length 2*n-1 = n*A005981(n-1) for n >= 2.

%C a(n) ~ (c_1)*n*(2*n - 1)!/(c_2)^(2n), where c_1 is a constant and c_2 = 1.87510... is the smallest positive solution of the equation cos(z)* cosh(z) + 1 = 0.

%H Alois P. Heinz, <a href="/A131455/b131455.txt">Table of n, a(n) for n = 1..250</a>

%H Guo-Niu Han, <a href="/A196265/a196265.pdf">Enumeration of Standard Puzzles</a>, 2011. [Cached copy]

%H Guo-Niu Han, <a href="https://arxiv.org/abs/2006.14070">Enumeration of Standard Puzzles</a>, arXiv:2006.14070 [math.CO], 2020.

%H B. Shapiro and A. Vainshtein, <a href="http://arXiv.org/abs/math.AG/0209062">Counting real rational functions with all real critical values</a>, arXiv:math/0209062 [math.AG], 2002.

%H B. Shapiro and A. Vainshtein, <a href="http://www.mathnet.ru/php/archive.phtml?wshow=paper&amp;jrnid=mmj&amp;paperid=103&amp;option_lang=eng">Counting real rational functions with all real critical values</a>, Moscow Math. J., 3 (2003), 647-659.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GeneralizedHyperbolicFunctions.html">Generalized Hyperbolic Functions</a>.

%F E.g.f.: Sum_{n >= 1} a(n)*(x^(2*n))/(2*n)! = (x/2)*(f(0,x)*f(1,x) - f(2,x)*f(3,x) + f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k >= 0} (x^(4*k + j))/(4*k + j)!, j = 0, 1, 2, 3, is the j-th generalized hyperbolic function.

%e From _Petros Hadjicostas_, Jul 25 2020: (Start)

%e For n = 2, the a(2)/2 = 1 "2 up, 2 down" permutation of length 2*2 - 1 = 3 is the following:

%e 3

%e /

%e 2

%e /

%e 1

%e For n = 3, the a(3)/3 = 6 "2 up, 2 down" permutations of length 2*3 - 1 = 5 are the following:

%e 5 5 5 5 5 5

%e / \ / \ / \ / \ / \ / \

%e 3 4 4 3 2 4 3 4 4 3 4 2

%e / \ / \ / \ / \ / \ / \

%e 1 2 1 2 1 3 2 1 2 1 3 1

%e (End)

%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1, add(

%p `if`(t=2, b(o-j, u+j-1, 1), b(u+j-1, o-j, t+1)), j=1..o))

%p end:

%p a:= n-> n*b(0, 2*n-1, 0):

%p seq(a(n), n=1..19); # _Alois P. Heinz_, Nov 23 2021

%t b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Sum[If[t == 2,

%t b[o - j, u + j - 1, 1], b[u + j - 1, o - j, t + 1]], {j, 1, o}]];

%t a[n_] := n*b[0, 2*n - 1, 0];

%t Table[a[n], {n, 1, 19}] (* _Jean-François Alcover_, Mar 07 2022, after _Alois P. Heinz_ *)

%o (PARI) f(j,x,nn) = sum(k=0, 2*nn, (x^(4*k + j))/(4*k + j)!);

%o g(x,nn) = (x/2)*(f(0,x,nn)*f(1,x,nn) - f(2,x,nn)*f(3,x,nn) + f(3,x,nn))/(f(0,x,nn)^2 - f(1,x,nn)*f(3,x,nn));

%o lista(nn) = {default(seriesprecision, 2*nn); my(a=vector(nn)); for(n=1, nn, a[n] = (2*n)!*polcoef(Ser(g(x,nn)), 2*n)); a;} \\ _Petros Hadjicostas_, Jul 25 2020

%Y Cf. A005981, A131453, A131454.

%K easy,nonn

%O 1,2

%A _Peter Bala_, Jul 13 2007

%E More terms from _Petros Hadjicostas_, Jul 25 2020