login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131456
Number of q-partial fraction summands of the reciprocal of n-th cyclotomic polynomial.
0
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 8, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 7, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 10, 1, 2, 1, 2, 1, 2, 1, 2, 7
OFFSET
1,2
COMMENTS
Let Phi(n,q) be the n-th cyclotomic polynomial in q. The q-partial fraction decomposition of 1/Phi(n,q) is a representation of 1/Phi(n,q) as a finite sum of functions v(q)/(1-q^m)^t, such that m<=n and degree(v)<phi(m) (Euler's totient function A000010).
LINKS
Augustine O. Munagi, Computation of q-partial fractions, INTEGERS: Electronic Journal Of Combinatorial Number Theory, 7 (2007), #A25.
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
EXAMPLE
(i) a(3)=1 because 1/Phi(3,q)=(1-q)/(1-q^3);
(ii) a(6)=2 because 1/Phi(6,q)=(-1-q)/(1-q^3) + (2+2q)/(1-q^6).
CROSSREFS
Cf. A051664 (Number of terms in n-th cyclotomic polynomial).
Sequence in context: A161263 A161288 A185217 * A074944 A245041 A161315
KEYWORD
nonn
AUTHOR
Augustine O. Munagi, Jul 12 2007
STATUS
approved