Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 02 2014 09:38:27
%S 1,2,1,2,1,2,1,2,1,2,1,4,1,2,1,2,1,2,1,2,1,2,1,6,1,2,1,2,1,2,1,2,1,2,
%T 1,4,1,2,1,2,1,2,1,2,1,2,1,8,1,2,1,2,1,2,1,2,1,2,1,7,1,2,1,2,1,2,1,2,
%U 1,2,1,6,1,2,1,2,1,2,1,2,1,2,1,4,1,2,1,2,1,2,1,2,1,2,1,10,1,2,1,2,1,2,1,2,7
%N Number of q-partial fraction summands of the reciprocal of n-th cyclotomic polynomial.
%C Let Phi(n,q) be the n-th cyclotomic polynomial in q. The q-partial fraction decomposition of 1/Phi(n,q) is a representation of 1/Phi(n,q) as a finite sum of functions v(q)/(1-q^m)^t, such that m<=n and degree(v)<phi(m) (Euler's totient function A000010).
%H Augustine O. Munagi, <a href="http://www.emis.de/journals/INTEGERS/papers/h25/h25.Abstract.html">Computation of q-partial fractions</a>, INTEGERS: Electronic Journal Of Combinatorial Number Theory, 7 (2007), #A25.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CyclotomicPolynomial.html">Cyclotomic Polynomial</a>
%e (i) a(3)=1 because 1/Phi(3,q)=(1-q)/(1-q^3);
%e (ii) a(6)=2 because 1/Phi(6,q)=(-1-q)/(1-q^3) + (2+2q)/(1-q^6).
%Y Cf. A051664 (Number of terms in n-th cyclotomic polynomial).
%K nonn
%O 1,2
%A _Augustine O. Munagi_, Jul 12 2007