Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Dec 21 2022 04:46:15
%S 1,2,22,440,12760,484880,22789360,1276204160,82953270400,
%T 6138542009600,509498986796800,46873906785305600,4734264585315865600,
%U 520769104384745216000,61971523421784680704000,7932354997988439130112000,1086732634724416160825344000,158662964669764759480500224000
%N a(n) = Product_{i=0..n-1} (9*i+2).
%H Robert Israel, <a href="/A084949/b084949.txt">Table of n, a(n) for n = 0..329</a>
%F a(n) = A084944(n)/A000142(n)*A000079(n) = 9^n*Pochhammer(2/9, n) = 9^n*Gamma(n+2/9)/Gamma(2/9).
%F a(n) = (-7)^n*Sum_{k=0..n} (9/7)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - _Mircea Merca_, May 03 2012
%F E.g.f.: (1-9*x)^(-2/9). - _Robert Israel_, Mar 22 2017
%F D-finite with recurrence: a(n) +(-9*n+7)*a(n-1)=0. - _R. J. Mathar_, Jan 20 2020
%F Sum_{n>=0} 1/a(n) = 1 + (e/9^7)^(1/9)*(Gamma(2/9) - Gamma(2/9, 1/9)). - _Amiram Eldar_, Dec 21 2022
%p a:= n-> product(9*i+2,i=0..n-1); seq(a(j),j=0..20);
%t Table[9^n*Pochhammer[2/9, n], {n,0,20}] (* _G. C. Greubel_, Aug 19 2019 *)
%o (PARI) vector(20, n, n--; prod(k=0, n-1, 9*k+2)) \\ _G. C. Greubel_, Aug 19 2019
%o (Magma) [1] cat [(&*[9*k+2: k in [0..n-1]]): n in [1..20]]; // _G. C. Greubel_, Aug 19 2019
%o (Sage) [product(9*k+2 for k in (0..n-1)) for n in (0..20)] # _G. C. Greubel_, Aug 19 2019
%o (GAP) List([0..20], n-> Product([0..n-1], k-> 9*k+2) ); # _G. C. Greubel_, Aug 19 2019
%Y Cf. A000165, A008544, A001813, A047055, A047657, A084947, A084948.
%Y Cf. A000079, A000142, A035012, A048994, A084944.
%K easy,nonn
%O 0,2
%A Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003