login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257605
Expansion of g.f.: exp( Sum_{n>=1} A251661(n)*x^n/n ) where A251661(n) = Sum_{k=0..n} C(n, k) * (2^k + 3^k)^(n-k).
1
1, 3, 12, 68, 606, 9438, 271154, 14272266, 1350900204, 226478780848, 67039275113982, 34862320055916606, 31905434621918041764, 51191148619374796495296, 144350180842362122992451022, 712487785268333349746955065478, 6171550949441004942637166827656834
OFFSET
0,2
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} A251661(n)*x^n/n ).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 12*x^2 + 68*x^3 + 606*x^4 + 9438*x^5 + 271154*x^6 + ...
The logarithm of g.f. A(x) begins:
log(A(x)) = 3*x + 15*x^2/2 + 123*x^3/3 + 1671*x^4/4 + 37863*x^5/5 + ... + A251661(n)*x^n/n + ...
which may be written as:
log(A(x)) = (2^1 + 1) * x +
(2^2 + 2*(2 + 3)^1 + 1) * x^2/2 +
(2^3 + 3*(2 + 3)^2 + 3*(2^2 + 3^2)^1 + 1) * x^3/3 +
(2^4 + 4*(2 + 3)^3 + 6*(2^2 + 3^2)^2 + 4*(2^3 + 3^3)^1 + 1) * x^4/4 +
(2^5 + 5*(2 + 3)^4 + 10*(2^2 + 3^2)^3 + 10*(2^3 + 3^3)^2 + 5*(2^4 + 3^4)^1 + 1) * x^5/5 + ...
MATHEMATICA
A251661[n_]:= A251661[n]= Sum[Binomial[n, k]*(2^k +3^k)^(n-k), {k, 0, n}];
With[{m = 50}, CoefficientList[Series[Exp[Sum[A251661[j]*x^j/j, {j, 2*m}]], {x, 0, m}], x]] (* G. C. Greubel, Mar 24 2022 *)
PROG
(PARI) {A251661(n) = sum(k=0, n, binomial(n, k) * (2^k + 3^k)^(n-k) )}
{a(n) = local(A = exp( sum(m=1, n, A251661(m)*x^m/m) +x*O(x^n)) ); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(Sage)
m=40
@CachedFunction
def A251661(n): return sum( binomial(n, k)*(2^k + 3^k)^(n-k) for k in (0..n) )
def p(x): return exp( sum(A251661(j)*x^j/j for j in (1..2*m)) )
def A257605(n): return ( p(x) ).series(x, n+1).list()[n]
[A257605(n) for n in (0..m)] # G. C. Greubel, Mar 24 2022
CROSSREFS
Cf. A251661.
Sequence in context: A004127 A058115 A101313 * A265886 A295762 A375811
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 02 2015
STATUS
approved