The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295762 G.f. A(x) satisfies: A(x - 2*A(x^2)) = x + A(x^2). 2
 1, 3, 12, 69, 444, 3060, 22104, 165195, 1266636, 9908196, 78760920, 634379124, 5166150000, 42465716328, 351876854448, 2936058188877, 24648274487556, 208040487845076, 1764376309044792, 15027939263874132, 128495423551583664, 1102547377746843624, 9490542912076091184, 81931260285359287812, 709199467337528862768, 6153967855892699398368, 53521531522907694320928, 466461452477641527148344 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Odd terms seem to occur only at a(2^n) for n>=0 (conjecture). LINKS Paul D. Hanna, Table of n, a(n) for n = 1..1030 FORMULA G.f. A(x) satisfies: (1) A(x) = x + 3 * A( (x + 2*A(x))^2/9 ). (2) A(x) = -x/2 + 3/2*Series_Reversion( x - 2*A(x^2) ). (3) x = A( -2*x + 3 * Series_Reversion( x + A(x^2) ) ). (4) A(x - 2*A(x^2)) = x + A(x^2). a(n) ~ c * d^n / n^(3/2), where d = 9.2093789571628170578048631587867514135871993630966974111785256401203919511... and c = 0.0682994378249920600052979267397719638823914060552824374... - Vaclav Kotesovec, Dec 04 2017 EXAMPLE G.f.: A(x) = x + 3*x^2 + 12*x^3 + 69*x^4 + 444*x^5 + 3060*x^6 + 22104*x^7 + 165195*x^8 + 1266636*x^9 + 9908196*x^10 + 78760920*x^11 + 634379124*x^12 +... such that A(x - 2*A(x^2)) = x + A(x^2). RELATED SERIES. A(x - 2*A(x^2)) = x + x^2 + 3*x^4 + 12*x^6 + 69*x^8 + 444*x^10 + 3060*x^12 + 22104*x^14 + 165195*x^16 + 1266636*x^18 + 9908196*x^20 +... which equals x + A(x^2). Series_Reversion( x - 2*A(x^2) ) = x + 2*x^2 + 8*x^3 + 46*x^4 + 296*x^5 + 2040*x^6 + 14736*x^7 + 110130*x^8 + 844424*x^9 + 6605464*x^10 + 52507280*x^11 + 422919416*x^12 +... which equals (2*A(x) + x)/3. A( (x + 2*A(x))^2/9 ) = x^2 + 4*x^3 + 23*x^4 + 148*x^5 + 1020*x^6 + 7368*x^7 + 55065*x^8 + 422212*x^9 + 3302732*x^10 + 26253640*x^11 + 211459708*x^12 +... which equals (A(x) - x)/3. Odd terms seem to occur only at positions 2^n, n>=0, beginning: [1, 3, 69, 165195, 2936058188877, 2740954751925406954539018771, 6899036855844990995854505818787102393537422152828959745477, ...]. MATHEMATICA nmax = 28; sol = {a[1] -> 1}; Do[A[x_] = Sum[a[k] x^k, {k, 1, n}] /. sol; eq = CoefficientList[A[x - 2 A[x^2]] - (x + A[x^2]) + O[x]^(n+1) // Normal, x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}]; sol /. Rule -> Set; a /@ Range[nmax] (* Jean-François Alcover, Nov 03 2019 *) PROG (PARI) {a(n) = my(A=x); for(i=1, n, A = -x/2 + 3/2*serreverse(x - 2*subst(A, x, x^2) +x^2*O(x^n)) ); polcoeff(A, n)} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A141200, A295760, A295761. Sequence in context: A101313 A257605 A265886 * A144008 A244610 A187007 Adjacent sequences: A295759 A295760 A295761 * A295763 A295764 A295765 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 03 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 04:55 EST 2023. Contains 367662 sequences. (Running on oeis4.)