login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257602 Expansion of (1+x+21*x^2+x^3+x^4)/(1-x)^5. 0
1, 6, 41, 156, 426, 951, 1856, 3291, 5431, 8476, 12651, 18206, 25416, 34581, 46026, 60101, 77181, 97666, 121981, 150576, 183926, 222531, 266916, 317631, 375251, 440376, 513631, 595666, 687156, 788801, 901326, 1025481, 1162041, 1311806, 1475601, 1654276, 1848706, 2059791, 2288456, 2535651 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

If x is replaced by x^5, this is the Molien series for the Heisenberg group H(5).

LINKS

Table of n, a(n) for n=0..39.

Yang-Hui He, John McKay, Sporadic and Exceptional, arXiv:1505.06742 [math.AG], 2015.

Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).

FORMULA

G.f.: (1+x+21*x^2+x^3+x^4)/(1-x)^5.

a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Vincenzo Librandi, Jun 08 2015

a(n) = 25/24*n^4 +25/12*n^3 +35/24*n^2 +5/12*n +1 = 1 + 5*n*(n+1)*(5*n^2+5*n+2)/24 = 1+5*A006322(n). - R. J. Mathar, Nov 09 2018

MATHEMATICA

CoefficientList[Series[(1 + x + 21 x^2 + x^3 + x^4)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 08 2015 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {1, 6, 41, 156, 426}, 40] (* Harvey P. Dale, Dec 01 2017 *)

PROG

(MAGMA) I:=[1, 6, 41, 156, 426]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..45]]; // Vincenzo Librandi, Jun 08 2015

CROSSREFS

Sequence in context: A096716 A000611 A043069 * A135232 A291890 A217326

Adjacent sequences:  A257599 A257600 A257601 * A257603 A257604 A257605

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Jun 07 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 31 04:01 EDT 2021. Contains 346367 sequences. (Running on oeis4.)