login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370345
Expansion of g.f. A(x) satisfying 1 - 2*Sum_{n>=1} Product_{k=1..n} (x^(2*k-1) - 2*A(x)) = Product_{k>=1} (1 - x^(2*k)) * (1 + x^k - 2*A(x))^2 / (1 + x^(2*k) - 2*A(x))^2.
4
1, 2, 9, 49, 295, 1893, 12697, 87985, 625050, 4527978, 33321906, 248416364, 1872145027, 14239620722, 109168322844, 842720914576, 6544740855880, 51099789487093, 400875949972026, 3158281869743276, 24978090277139632, 198234044661303243, 1578237110356269055, 12601524223155447189
OFFSET
1,2
COMMENTS
Compare to identity: 1 + 2*Sum_{n>=0} x^(n^2) = Product_{n>=1} (1 - x^(2*n)) * (1 + x^n)^2 / (1 + x^(2*n))^2.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) B(x) = Product_{k>=1} (1 - x^(2*k)) * (1 + x^k - 2*A(x))^2 / (1 + x^(2*k) - 2*A(x))^2.
(2) B(x) = 1 - 2*Sum_{n>=1} Product_{k=1..n} (x^(2*k-1) - 2*A(x)).
(3) B(x) = 3 - 2*Sum_{n>=0} x^(n^2) / Product_{k=0..n} (1 + 2*x^(2*k)*A(x)).
(4) B(x) = 1 - 2*(x - 2*A(x))/(1 + F(1)), where F(n) = -(x^(2*n+1) - 2*A(x))/(1 + (x^(2*n+1) - 2*A(x)) + F(n+1)), a continued fraction.
a(n) ~ c * d^n / n^(3/2), where d = 8.5161154068976325332006245928737661345... and c = 0.06900087714889532378308608613059862... - Vaclav Kotesovec, Feb 27 2024
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 9*x^3 + 49*x^4 + 295*x^5 + 1893*x^6 + 12697*x^7 + 87985*x^8 + 625050*x^9 + 4527978*x^10 + 33321906*x^11 + 248416364*x^12 + ...
By definition, A = A(x) allows for the following expressions to equal
B(x) = 1 - 2*(x - 2*A) - 2*(x - 2*A)*(x^3 - 2*A) - 2*(x - 2*A)*(x^3 - 2*A)*(x^5 - 2*A) - 2*(x - 2*A)*(x^3 - 2*A)*(x^5 - 2*A)*(x^7 - 2*A) - 2*(x - 2*A)*(x^3 - 2*A)*(x^5 - 2*A)*(x^7 - 2*A)*(x^9 - 2*A) + ...
B(x) = (1 - x^2)*(1 + x - 2*A)^2/(1 + x^2 - 2*A)^2 * (1 - x^4)*(1 + x^2 - 2*A)^2/(1 + x^4 - 2*A)^2 * (1 - x^6)*(1 + x^3 - 2*A)^2/(1 + x^6 - 2*A)^2 * (1 - x^8)*(1 + x^4 - 2*A)^2/(1 + x^8 - 2*A)^2 * ...
where B(x) begins
B(x) = 1 + 2*x + 4*x^2 + 20*x^3 + 106*x^4 + 628*x^5 + 3996*x^6 + 26676*x^7 + 184336*x^8 + 1307010*x^9 + 9454904*x^10 + 69505040*x^11 + 517724884*x^12 + ...
PROG
(PARI) {a(n) = my(A=[0, 1]); for(i=1, n, A=concat(A, 0);
A[#A] = -polcoeff( ( 1 - 2*sum(m=1, #A, prod(k=1, m, x^(2*k-1) - 2*Ser(A)) ) - prod(m=1, #A, (1 - x^(2*m))*(1 + x^m - 2*Ser(A))^2/(1 + x^(2*m) - 2*Ser(A))^2 ) )/4, #A-1)); H=A; A[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 16 2024
STATUS
approved