login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370348
Numbers k such that there are fewer divisors of prime indices of k than there are prime indices of k.
19
4, 8, 12, 16, 18, 20, 24, 27, 32, 36, 40, 44, 48, 50, 54, 56, 60, 64, 68, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 124, 125, 126, 128, 132, 135, 136, 144, 150, 160, 162, 164, 168, 176, 180, 184, 189, 192, 196, 198, 200, 204, 208, 216, 220, 224, 225, 236, 240, 242, 243, 248, 250, 252, 256
OFFSET
1,1
COMMENTS
No multiple of a term is a term of A368110.
LINKS
EXAMPLE
a(5) = 18 is a term because the prime indices of 18 = 2 * 3^2 are 1,2,2, and there are 3 of these but only 2 divisors of prime indices, namely 1 and 2.
MAPLE
filter:= proc(n) uses numtheory; local F, D, t;
F:= map(t -> [pi(t[1]), t[2]], ifactors(n)[2]);
D:= `union`(seq(divisors(t[1]), t = F));
nops(D) < add(t[2], t = F)
end proc:
select(filter, [$1..300]);
MATHEMATICA
filter[n_] := Module[{F, d},
F = {PrimePi[#[[1]]], #[[2]]}& /@ FactorInteger[n];
d = Union[Flatten[Divisors /@ F[[All, 1]]]];
Length[d] < Total[F[[All, 2]]]];
Select[Range[300], filter] (* Jean-François Alcover, Mar 08 2024, after Maple code *)
CROSSREFS
The LHS is A370820, firsts A371131.
The version for equality is A370802, counted by A371130, strict A371128.
For submultisets instead of parts on the RHS we get A371167.
The opposite version is A371168, counted by A371173.
The weak version is A371169.
The complement is A371170.
Partitions of this type are counted by A371171.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, indices A112798, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
Sequence in context: A130702 A355740 A371089 * A053806 A068306 A378040
KEYWORD
nonn
AUTHOR
Robert Israel, Feb 15 2024
STATUS
approved