login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130702
Possible sides in the Euler V=E-F+2 as roots in a cubic polynomial of the form: P(x)=(x-V)*(x-F)*(x+E) =x^3+(E-V-F)*x^2+(V*F-E(V+F))*x=E*F*V Solves here for F ( Face, Edge, Vertex).
0
4, 8, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 48, 52, 54, 56, 60, 64, 66, 72
OFFSET
1,1
COMMENTS
Polynomial cubic of Euler's V,F,E: V=E-F+2 P(x)=(x-V)*(x-F)*(x+E) =x^3+(E-V-F)*x^2+(V*F-E(V+F))*x=E*F*V letting (E-V-F)=-2 V+F=E+2 and product: p=V*F I got P(x)=x3-2*x2+(p-E*(E+2))*x+E*p Setting that polynomial equal to zero gives roots that agree with Euler's equation. In the exceptional groups: ( down to two integer variables) p=16*m ; m-> {1,3,15} E=6*n ; n->{1,2,5} The program works to produce the right roots for {-E,V,F}
FORMULA
F roots such that:x^3+(E-V-F)*x^2+(V*F-E(V+F))*x=E*F*V and that are exceptional like ( tetrahedron, cube, octahedron, dodecahedron, icosahedron)
EXAMPLE
Program to get roots for tetrahedron, (cube, octahedron),
(dodecahedron,
icosahedron):
a = {1, 2, 5}
b = {1, 3, 15}
g[n_, m_] := x /. Solve[e [a[[m]]]*p[b[[m]]] - e [a[[m]]]*(e[a[[
m]]] + 2)*x + p[b[[m]]]* x - 2* x^2 + x^3 == 0, x][[n]]
Table[g[n, m], {n, 1, 3}, {m, 1, 3}]
{{-6, -12, -30}, {4, 6, 12}, {4, 8, 20}}
MATHEMATICA
ExpandAll[(x - v)*(x - f)*(x + e)]; e[n_] := 6*n; p[m_] := 16*m; a0 = Table[If[IntegerQ[x /. Solve[e [m]*p[p0] - e [m]*(e[m] + 2)*x +p[p0]* x - 2* x^2 + x^3 == 0, x][[1]]] && IntegerQ[x /. Solve[e [m]*p[p0] - e [m]*(e[m] + 2)*x + p[p0]* x - 2* x^2 + x^3 == 0, x][[2]]] && IntegerQ[x /. Solve[e [m]*p[p0] - e [m]*(e[m] + 2)*x +p[p0]* x - 2* x^2 + x^3 == 0, x][[3]]], {Abs[x] /. Solve[e [m]*p[p0] - e [m]*(e[m] + 2)*x + p[p0]* x - 2* x^2 + x^3 == 0, x][[3]]}, {}], {m, 1, 12}, {p0, 1, 33}]
CROSSREFS
Cf. edge: A008458; vertex: A118081.
Sequence in context: A020647 A274919 A196032 * A355740 A371089 A370348
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Jul 06 2007
STATUS
approved