OFFSET
2,1
COMMENTS
From Gao's abstract: "We study finite sections of weighted Carleman's inequality following the approach of De Bruijn. Similar to the unweighted case, we obtain an asymptotic expression for the optimal constant."
LINKS
N. G. De Bruijn, Carleman's inequality for finite series, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag, pp. 505-514.
Peng Gao, Finite Sections of Weighted Carleman's Inequality, arXiv:0707.0077 [math.CA], 2007.
FORMULA
a(n) = floor(e - (2*(Pi^2)*e)/((log(n))^2)).
EXAMPLE
a(2) = -109 because e - (2*(pi^2)*e)/((log(2))^2) ~ -108.9611770171388392925257212314455433803548032218666994709.
a(3) = -42 because e - (2*(pi^2)*e)/((log(3))^2) ~ -41.7382232411477828847325690963577817095329948893743754723.
a(4) = -26 because e - (2*(pi^2)*e)/((log(4))^2) ~ -25.20158288294042589661121470434688897177076548519170518650.
a(30) = -2 because e - (2*(pi^2)*e)/((log(30))^2) ~ -1.92003649778404604739381818236913112747520.
a(45) = -1 because e - (2*(pi^2)*e)/((log(45))^2) ~ -0.98456269963010489451493724472555817336322761419762175593.
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Jonathan Vos Post, Jul 03 2007
STATUS
approved