login
A130705
Floors of constants in de Bruijn's approach to weighted Carleman's inequality.
0
-109, -42, -26, -18, -14, -12, -10, -9, -8, -7, -6, -6, -5, -5, -5, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1
OFFSET
2,1
COMMENTS
From Gao's abstract: "We study finite sections of weighted Carleman's inequality following the approach of De Bruijn. Similar to the unweighted case, we obtain an asymptotic expression for the optimal constant."
LINKS
N. G. De Bruijn, Carleman's inequality for finite series, Nederl. Akad. Wetensch. Proc. Ser. A 66 = Indag, pp. 505-514.
Peng Gao, Finite Sections of Weighted Carleman's Inequality, arXiv:0707.0077 [math.CA], 2007.
FORMULA
a(n) = floor(e - (2*(Pi^2)*e)/((log(n))^2)).
EXAMPLE
a(2) = -109 because e - (2*(pi^2)*e)/((log(2))^2) ~ -108.9611770171388392925257212314455433803548032218666994709.
a(3) = -42 because e - (2*(pi^2)*e)/((log(3))^2) ~ -41.7382232411477828847325690963577817095329948893743754723.
a(4) = -26 because e - (2*(pi^2)*e)/((log(4))^2) ~ -25.20158288294042589661121470434688897177076548519170518650.
a(30) = -2 because e - (2*(pi^2)*e)/((log(30))^2) ~ -1.92003649778404604739381818236913112747520.
a(45) = -1 because e - (2*(pi^2)*e)/((log(45))^2) ~ -0.98456269963010489451493724472555817336322761419762175593.
CROSSREFS
Sequence in context: A340348 A340347 A247440 * A253431 A253438 A263194
KEYWORD
easy,sign
AUTHOR
Jonathan Vos Post, Jul 03 2007
STATUS
approved