The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130707 a(n+3) = 3*(a(n+2) - a(n+1)) + 2*a(n). 3
 1, 2, 2, 2, 4, 10, 22, 44, 86, 170, 340, 682, 1366, 2732, 5462, 10922, 21844, 43690, 87382, 174764, 349526, 699050, 1398100, 2796202, 5592406, 11184812, 22369622, 44739242, 89478484, 178956970, 357913942, 715827884, 1431655766, 2863311530 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of period-3 sequence with period 1 1 -1. LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3, -3, 2). FORMULA a(n) = 2^n/3 + 4*(-1)^n*(1/3)*cos((2n+1)*Pi/3). - Emeric Deutsch, Jul 27 2007 From R. J. Mathar, Nov 18 2007: (Start) G.f.: (-1+x+x^2)/(2*x-1)/(x^2-x+1). a(n) = (2*A057079(n) + 2^n)/3. (End) a(n) = (1/3)*(1/2 - (1/2)*i*sqrt(3))^n + (1/3)*(1/2 + (1/2)*i*sqrt(3))^n + (1/3)*2^n + (1/3)*i*(1/2 - (1/2)*i*sqrt(3))^n*sqrt(3) - (1/3)*i*(1/2 + (1/2)*i*sqrt(3))^n*sqrt(3), with n >= 0. - Paolo P. Lava, May 10 2010 MAPLE a:=proc(n) options operator, arrow: (1/3)*2^n+(4/3)*(-1)^n*cos((1/3)*(2*n+1)*Pi) end proc: seq(a(n), n = 0 .. 33); # Emeric Deutsch, Jul 27 2007 MATHEMATICA RecurrenceTable[{a[0]==1, a[1]==a[2]==2, a[n]==3(a[n-1]-a[n-2])+2a[n-3]}, a, {n, 40}] (* or *) LinearRecurrence[{3, -3, 2}, {1, 2, 2}, 40] (* Harvey P. Dale, Jan 18 2015 *) CROSSREFS Sequence in context: A231382 A213270 A307522 * A131562 A260786 A107902 Adjacent sequences:  A130704 A130705 A130706 * A130708 A130709 A130710 KEYWORD nonn AUTHOR Paul Curtz, Jul 01 2007 EXTENSIONS More terms from Emeric Deutsch, Jul 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 01:55 EDT 2020. Contains 336476 sequences. (Running on oeis4.)