login
A253431
Number of (n+1) X (4+1) 0..1 arrays with every 2 X 2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
1
109, 102, 120, 156, 228, 372, 660, 1236, 2388, 4692, 9300, 18516, 36948, 73812, 147540, 294996, 589908, 1179732, 2359380, 4718676, 9437268, 18874452, 37748820, 75497556, 150995028, 301989972, 603979860, 1207959636, 2415919188, 4831838292
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) for n>3.
Empirical: a(n) = 9*2^(n-1) + 84 for n>1.
Empirical g.f.: x*(109 - 225*x + 32*x^2) / ((1 - x)*(1 - 2*x)). - Colin Barker, Dec 12 2018
EXAMPLE
Some solutions for n=4:
..0..1..1..1..1....0..0..0..0..0....0..0..0..0..0....1..1..1..1..1
..0..0..0..0..0....0..0..0..0..0....1..0..0..0..0....1..1..1..1..1
..1..1..1..1..1....1..1..1..1..1....1..0..0..0..0....1..1..1..1..1
..1..1..1..1..1....0..0..0..0..0....1..0..0..0..0....1..1..1..1..1
..1..1..1..1..1....0..0..0..0..0....1..0..0..0..0....0..0..0..0..1
CROSSREFS
Column 4 of A253435.
Sequence in context: A340347 A247440 A130705 * A253438 A263194 A231701
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 31 2014
STATUS
approved