login
A253430
Number of (n+1) X (3+1) 0..1 arrays with every 2 X 2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
1
69, 70, 85, 121, 193, 337, 625, 1201, 2353, 4657, 9265, 18481, 36913, 73777, 147505, 294961, 589873, 1179697, 2359345, 4718641, 9437233, 18874417, 37748785, 75497521, 150994993, 301989937, 603979825, 1207959601, 2415919153, 4831838257
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) for n>4.
Empirical: a(n) = 9*2^(n-1) + 49 for n>2.
Empirical g.f.: x*(69 - 137*x + 13*x^2 + 6*x^3) / ((1 - x)*(1 - 2*x)). - Colin Barker, Dec 12 2018
EXAMPLE
Some solutions for n=4:
..1..1..1..1....1..0..1..0....0..1..0..0....1..1..1..1....1..1..1..0
..1..1..1..1....1..0..1..0....0..1..0..0....0..0..0..0....1..1..1..0
..0..0..0..0....1..0..1..0....0..1..0..0....1..1..1..1....1..1..1..0
..1..1..1..1....1..0..1..0....0..1..0..0....1..1..1..1....1..1..1..0
..0..0..0..0....1..0..1..0....0..1..0..0....0..0..0..0....0..0..1..1
CROSSREFS
Column 3 of A253435.
Sequence in context: A033389 A265189 A345486 * A256694 A166067 A253437
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 31 2014
STATUS
approved