login
A253435
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14
16, 39, 39, 69, 58, 69, 109, 70, 73, 109, 181, 102, 85, 108, 181, 325, 174, 120, 121, 180, 325, 613, 318, 192, 156, 193, 324, 613, 1189, 606, 336, 228, 228, 337, 612, 1189, 2341, 1182, 624, 372, 300, 372, 625, 1188, 2341, 4645, 2334, 1200, 660, 444, 444, 660, 1201
OFFSET
1,1
COMMENTS
Table starts
...16...39...69..109..181..325..613.1189.2341.4645..9253.18469.36901.73765
...39...58...70..102..174..318..606.1182.2334.4638..9246.18462.36894.73758
...69...73...85..120..192..336..624.1200.2352.4656..9264.18480.36912.73776
..109..108..121..156..228..372..660.1236.2388.4692..9300.18516.36948.73812
..181..180..193..228..300..444..732.1308.2460.4764..9372.18588.37020.73884
..325..324..337..372..444..588..876.1452.2604.4908..9516.18732.37164.74028
..613..612..625..660..732..876.1164.1740.2892.5196..9804.19020.37452.74316
.1189.1188.1201.1236.1308.1452.1740.2316.3468.5772.10380.19596.38028.74892
.2341.2340.2353.2388.2460.2604.2892.3468.4620.6924.11532.20748.39180.76044
.4645.4644.4657.4692.4764.4908.5196.5772.6924.9228.13836.23052.41484.78348
LINKS
FORMULA
Empirical for diagonal:
diagonal: a(n) = 3*a(n-1) -2*a(n-2) for n>5
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2) for n>5
k=2: a(n) = 3*a(n-1) -2*a(n-2) for n>5
k=3: a(n) = 3*a(n-1) -2*a(n-2) for n>4
k=4: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=5: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=6: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=7: a(n) = 3*a(n-1) -2*a(n-2) for n>3
Empirical for row n:
n=1: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=2: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=3: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=4: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=5: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=6: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=7: a(n) = 3*a(n-1) -2*a(n-2) for n>5
Empirical for diagonal:
diagonal: 9*2^n + 12 for n>3
Empirical for columns:
k=1: 9*2^(n-1) + 37 for n>3
k=2: 9*2^(n-1) + 36 for n>3
k=3: 9*2^(n-1) + 49 for n>2
k=4: 9*2^(n-1) + 84 for n>1
k=5: 9*2^(n-1) + 156 for n>1
k=6: 9*2^(n-1) + 300 for n>1
k=7: 9*2^(n-1) + 588 for n>1
Empirical for rows:
n=1: 9*2^(k-1) + 37 for k>3
n=2: 9*2^(k-1) + 30 for k>3
n=3: 9*2^(k-1) + 48 for k>3
n=4: 9*2^(k-1) + 84 for k>3
n=5: 9*2^(k-1) + 156 for k>3
n=6: 9*2^(k-1) + 300 for k>3
n=7: 9*2^(k-1) + 588 for k>3
Empirical: T(n,k) = 9*2(n-1) + 9*2^(k-1) + c, where
rows
n=1 c=28 for k>3
n>1 c=12 for k>3
columns
k=1 c=28 for n>3
k=2 c=18 for n>3
k=3 c=13 for n>2
k>3 c=12 for n>1
summary table of c
..-2..12..24..28..28..28..28..28..28..28
..12..22..16..12..12..12..12..12..12..12
..24..19..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
EXAMPLE
Some solutions for n=4 k=4
..1..0..0..0..1....1..1..1..1..1....1..1..1..0..0....0..0..0..0..0
..1..0..0..0..1....1..1..1..1..1....1..1..1..0..0....1..1..1..1..1
..1..0..0..0..1....1..1..1..1..1....1..1..1..0..0....1..1..1..1..1
..1..0..0..0..1....0..0..0..0..0....1..1..1..0..0....0..0..0..0..0
..1..0..0..0..1....0..0..0..0..0....1..1..1..0..0....1..1..1..1..1
CROSSREFS
Column 1 and row 1 are A253152
Sequence in context: A122029 A218900 A070585 * A253159 A308311 A121375
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 31 2014
STATUS
approved