login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253435 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally 14
16, 39, 39, 69, 58, 69, 109, 70, 73, 109, 181, 102, 85, 108, 181, 325, 174, 120, 121, 180, 325, 613, 318, 192, 156, 193, 324, 613, 1189, 606, 336, 228, 228, 337, 612, 1189, 2341, 1182, 624, 372, 300, 372, 625, 1188, 2341, 4645, 2334, 1200, 660, 444, 444, 660, 1201 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

...16...39...69..109..181..325..613.1189.2341.4645..9253.18469.36901.73765

...39...58...70..102..174..318..606.1182.2334.4638..9246.18462.36894.73758

...69...73...85..120..192..336..624.1200.2352.4656..9264.18480.36912.73776

..109..108..121..156..228..372..660.1236.2388.4692..9300.18516.36948.73812

..181..180..193..228..300..444..732.1308.2460.4764..9372.18588.37020.73884

..325..324..337..372..444..588..876.1452.2604.4908..9516.18732.37164.74028

..613..612..625..660..732..876.1164.1740.2892.5196..9804.19020.37452.74316

.1189.1188.1201.1236.1308.1452.1740.2316.3468.5772.10380.19596.38028.74892

.2341.2340.2353.2388.2460.2604.2892.3468.4620.6924.11532.20748.39180.76044

.4645.4644.4657.4692.4764.4908.5196.5772.6924.9228.13836.23052.41484.78348

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..1101

FORMULA

Empirical for diagonal:

diagonal: a(n) = 3*a(n-1) -2*a(n-2) for n>5

Empirical for column k:

k=1: a(n) = 3*a(n-1) -2*a(n-2) for n>5

k=2: a(n) = 3*a(n-1) -2*a(n-2) for n>5

k=3: a(n) = 3*a(n-1) -2*a(n-2) for n>4

k=4: a(n) = 3*a(n-1) -2*a(n-2) for n>3

k=5: a(n) = 3*a(n-1) -2*a(n-2) for n>3

k=6: a(n) = 3*a(n-1) -2*a(n-2) for n>3

k=7: a(n) = 3*a(n-1) -2*a(n-2) for n>3

Empirical for row n:

n=1: a(n) = 3*a(n-1) -2*a(n-2) for n>5

n=2: a(n) = 3*a(n-1) -2*a(n-2) for n>5

n=3: a(n) = 3*a(n-1) -2*a(n-2) for n>5

n=4: a(n) = 3*a(n-1) -2*a(n-2) for n>5

n=5: a(n) = 3*a(n-1) -2*a(n-2) for n>5

n=6: a(n) = 3*a(n-1) -2*a(n-2) for n>5

n=7: a(n) = 3*a(n-1) -2*a(n-2) for n>5

Empirical for diagonal:

diagonal: 9*2^n + 12 for n>3

Empirical for columns:

k=1: 9*2^(n-1) + 37 for n>3

k=2: 9*2^(n-1) + 36 for n>3

k=3: 9*2^(n-1) + 49 for n>2

k=4: 9*2^(n-1) + 84 for n>1

k=5: 9*2^(n-1) + 156 for n>1

k=6: 9*2^(n-1) + 300 for n>1

k=7: 9*2^(n-1) + 588 for n>1

Empirical for rows:

n=1: 9*2^(k-1) + 37 for k>3

n=2: 9*2^(k-1) + 30 for k>3

n=3: 9*2^(k-1) + 48 for k>3

n=4: 9*2^(k-1) + 84 for k>3

n=5: 9*2^(k-1) + 156 for k>3

n=6: 9*2^(k-1) + 300 for k>3

n=7: 9*2^(k-1) + 588 for k>3

Empirical: T(n,k) = 9*2(n-1) + 9*2^(k-1) + c, where

rows

n=1 c=28 for k>3

n>1 c=12 for k>3

columns

k=1 c=28 for n>3

k=2 c=18 for n>3

k=3 c=13 for n>2

k>3 c=12 for n>1

summary table of c

..-2..12..24..28..28..28..28..28..28..28

..12..22..16..12..12..12..12..12..12..12

..24..19..13..12..12..12..12..12..12..12

..28..18..13..12..12..12..12..12..12..12

..28..18..13..12..12..12..12..12..12..12

..28..18..13..12..12..12..12..12..12..12

..28..18..13..12..12..12..12..12..12..12

..28..18..13..12..12..12..12..12..12..12

..28..18..13..12..12..12..12..12..12..12

..28..18..13..12..12..12..12..12..12..12

EXAMPLE

Some solutions for n=4 k=4

..1..0..0..0..1....1..1..1..1..1....1..1..1..0..0....0..0..0..0..0

..1..0..0..0..1....1..1..1..1..1....1..1..1..0..0....1..1..1..1..1

..1..0..0..0..1....1..1..1..1..1....1..1..1..0..0....1..1..1..1..1

..1..0..0..0..1....0..0..0..0..0....1..1..1..0..0....0..0..0..0..0

..1..0..0..0..1....0..0..0..0..0....1..1..1..0..0....1..1..1..1..1

CROSSREFS

Column 1 and row 1 are A253152

Sequence in context: A122029 A218900 A070585 * A253159 A308311 A121375

Adjacent sequences:  A253432 A253433 A253434 * A253436 A253437 A253438

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Dec 31 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 11:17 EST 2021. Contains 349594 sequences. (Running on oeis4.)