OFFSET
1,1
COMMENTS
Table starts
...16...39...69..109..181..325..613.1189.2341.4645..9253.18469.36901.73765
...39...58...70..102..174..318..606.1182.2334.4638..9246.18462.36894.73758
...69...73...85..120..192..336..624.1200.2352.4656..9264.18480.36912.73776
..109..108..121..156..228..372..660.1236.2388.4692..9300.18516.36948.73812
..181..180..193..228..300..444..732.1308.2460.4764..9372.18588.37020.73884
..325..324..337..372..444..588..876.1452.2604.4908..9516.18732.37164.74028
..613..612..625..660..732..876.1164.1740.2892.5196..9804.19020.37452.74316
.1189.1188.1201.1236.1308.1452.1740.2316.3468.5772.10380.19596.38028.74892
.2341.2340.2353.2388.2460.2604.2892.3468.4620.6924.11532.20748.39180.76044
.4645.4644.4657.4692.4764.4908.5196.5772.6924.9228.13836.23052.41484.78348
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..1101
FORMULA
Empirical for diagonal:
diagonal: a(n) = 3*a(n-1) -2*a(n-2) for n>5
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2) for n>5
k=2: a(n) = 3*a(n-1) -2*a(n-2) for n>5
k=3: a(n) = 3*a(n-1) -2*a(n-2) for n>4
k=4: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=5: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=6: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=7: a(n) = 3*a(n-1) -2*a(n-2) for n>3
Empirical for row n:
n=1: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=2: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=3: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=4: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=5: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=6: a(n) = 3*a(n-1) -2*a(n-2) for n>5
n=7: a(n) = 3*a(n-1) -2*a(n-2) for n>5
Empirical for diagonal:
diagonal: 9*2^n + 12 for n>3
Empirical for columns:
k=1: 9*2^(n-1) + 37 for n>3
k=2: 9*2^(n-1) + 36 for n>3
k=3: 9*2^(n-1) + 49 for n>2
k=4: 9*2^(n-1) + 84 for n>1
k=5: 9*2^(n-1) + 156 for n>1
k=6: 9*2^(n-1) + 300 for n>1
k=7: 9*2^(n-1) + 588 for n>1
Empirical for rows:
n=1: 9*2^(k-1) + 37 for k>3
n=2: 9*2^(k-1) + 30 for k>3
n=3: 9*2^(k-1) + 48 for k>3
n=4: 9*2^(k-1) + 84 for k>3
n=5: 9*2^(k-1) + 156 for k>3
n=6: 9*2^(k-1) + 300 for k>3
n=7: 9*2^(k-1) + 588 for k>3
Empirical: T(n,k) = 9*2(n-1) + 9*2^(k-1) + c, where
rows
n=1 c=28 for k>3
n>1 c=12 for k>3
columns
k=1 c=28 for n>3
k=2 c=18 for n>3
k=3 c=13 for n>2
k>3 c=12 for n>1
summary table of c
..-2..12..24..28..28..28..28..28..28..28
..12..22..16..12..12..12..12..12..12..12
..24..19..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
..28..18..13..12..12..12..12..12..12..12
EXAMPLE
Some solutions for n=4 k=4
..1..0..0..0..1....1..1..1..1..1....1..1..1..0..0....0..0..0..0..0
..1..0..0..0..1....1..1..1..1..1....1..1..1..0..0....1..1..1..1..1
..1..0..0..0..1....1..1..1..1..1....1..1..1..0..0....1..1..1..1..1
..1..0..0..0..1....0..0..0..0..0....1..1..1..0..0....0..0..0..0..0
..1..0..0..0..1....0..0..0..0..0....1..1..1..0..0....1..1..1..1..1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 31 2014
STATUS
approved