|
|
A345486
|
|
Numbers that are the sum of seven squares in nine or more ways.
|
|
6
|
|
|
69, 70, 78, 79, 81, 82, 85, 87, 88, 90, 91, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2*a(n-1) - a(n-2) for n > 13.
G.f.: x*(-x^12 + x^11 - x^10 + x^9 - x^8 - x^7 + 2*x^6 - x^5 + x^4 - 7*x^3 + 7*x^2 - 68*x + 69)/(x - 1)^2. (End)
|
|
EXAMPLE
|
70 is a term because 70 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 8^2 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 7^2 = 1^2 + 1^2 + 1^2 + 1^2 + 4^2 + 5^2 + 5^2 = 1^2 + 1^2 + 2^2 + 4^2 + 4^2 + 4^2 + 4^2 = 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 4^2 + 5^2 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 7^2 = 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 + 5^2 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2 + 5^2 = 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 6^2 = 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2.
|
|
PROG
|
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**2 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 9])
for x in range(len(rets)):
print(rets[x])
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|