login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A345485 Numbers that are the sum of seven squares in eight or more ways. 6
61, 66, 69, 70, 72, 73, 76, 77, 78, 79, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Sean A. Irvine, Table of n, a(n) for n = 1..1000

EXAMPLE

66 is a term because 66 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 5^2 + 6^2 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 7^2 = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 5^2 = 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 6^2 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 4^2 + 6^2 = 1^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2 + 4^2 = 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 5^2 = 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 5^2.

PROG

(Python)

from itertools import combinations_with_replacement as cwr

from collections import defaultdict

keep = defaultdict(lambda: 0)

power_terms = [x**2 for x in range(1, 1000)]

for pos in cwr(power_terms, 7):

    tot = sum(pos)

    keep[tot] += 1

    rets = sorted([k for k, v in keep.items() if v >= 8])

    for x in range(len(rets)):

        print(rets[x])

CROSSREFS

Cf. A344812, A345484, A345486, A345495, A345526.

Sequence in context: A195378 A260561 A346808 * A295805 A295157 A095575

Adjacent sequences:  A345482 A345483 A345484 * A345486 A345487 A345488

KEYWORD

nonn

AUTHOR

David Consiglio, Jr., Jun 20 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 12 07:10 EDT 2022. Contains 356067 sequences. (Running on oeis4.)