login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345482
Numbers that are the sum of seven squares in five or more ways.
6
45, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117
OFFSET
1,1
LINKS
FORMULA
Conjectures from Chai Wah Wu, Apr 25 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 13.
G.f.: x*(-x^12 + x^11 - x^10 + x^9 - x^8 + x^7 - x^6 + x^5 - x^4 + x^3 - 8*x^2 - 36*x + 45)/(x - 1)^2. (End)
EXAMPLE
54 = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 4^2 + 5^2
= 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 6^2
= 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2
= 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2
= 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 5^2
so 54 is a term.
PROG
(Python)
from itertools import combinations_with_replacement as cwr
from collections import defaultdict
keep = defaultdict(lambda: 0)
power_terms = [x**2 for x in range(1, 1000)]
for pos in cwr(power_terms, 7):
tot = sum(pos)
keep[tot] += 1
rets = sorted([k for k, v in keep.items() if v >= 5])
for x in range(len(rets)):
print(rets[x])
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved