OFFSET
1,1
COMMENTS
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
It is a finite sequence; number of entries is 115 = A000081(8).
LINKS
E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
E. Deutsch, Rooted tree statistics from Matula numbers, Discrete Appl. Math., 160, 2012, 2314-2322.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
FORMULA
A061775(n) yields the number of vertices of the rooted tree with Matula-Goebel number n. We use it to find the Matula-Goebel numbers of the rooted trees having 8 vertices.
EXAMPLE
128=2^7 is in the sequence; it is the Matula-Goebel number of the star K_{1,7}.
MAPLE
with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: A := {}: for n to 3000 do if N(n) = 8 then A := `union`(A, {n}) else end if end do: A;
MATHEMATICA
MGweight[n_] := If[n == 1, 1, 1 + Total[Cases[FactorInteger[n], {p_, k_} :> k*MGweight[PrimePi[p]]]]];
Select[Range[Nest[Prime, 8, 4]], MGweight[#] == 8&] (* Jean-François Alcover, Nov 11 2017, after Gus Wiseman's program for A061773 *)
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Emeric Deutsch, Aug 14 2012
STATUS
approved