The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A214570 a(n) = Max(c(t)), where c(t) is the number of ordered trees isomorphic - as rooted trees - to the rooted tree t and the maximum is taken over all rooted trees with n vertices. 3
 1, 1, 1, 2, 3, 4, 6, 12, 24, 40, 60, 120, 240, 420, 840, 1680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) is also the size of the largest equivalence class of function representations as x^x^...^x with n x's and parentheses inserted in all possible ways. a(4) = 2: (x^x)^(x^x) == (x^(x^x))^x; a(5) = 3: ((x^x)^x)^(x^x) == ((x^x)^(x^x))^x == ((x^(x^x))^x)^x. - Alois P. Heinz, Aug 31 2012 LINKS FORMULA No formula available, except a(n)=number of entries in row n of A214569. EXAMPLE a(4) = 2 because among the four rooted trees with 4 vertices the path tree P_4, the star tree K_{1,3}, and the tree in the shape of Y are isomorphic only to themselves, while A - B - C - D with root at B is isomorphic to itself and to A - B - C - D with root at C. MAPLE F:= proc(n) option remember; `if`(n=1, [x+1],       [seq(seq(seq(f^g, g=F(n-i)), f=F(i)), i=1..n-1)])     end: a:= proc(n) option remember; local i, l, m, p; m:=0;       l:= map(f->coeff(series(f, x, n+1), x, n), F(n)):       p:= proc() 0 end: forget(p);       for i in l do p(i):= p(i)+1; m:= max(m, p(i))       od: m     end: seq(a(n), n=1..10);  # Alois P. Heinz, Aug 31 2012 MATHEMATICA F[n_] := F[n] = If[n == 1, {x+1}, Flatten[Table[Table[Table[f^g, {g, F[n-i]}], {f, F[i]}], {i, 1, n-1}]]]; a[n_] := a[n] = Module[{i, l, m, p}, m = 0; l = Map[ Function[ {f}, Coefficient[Series[f, {x, 0, n+1}], x, n]], F[n]]; Clear[p]; p[_] = 0; Do[p[i] = p[i]+1; m = Max[m, p[i]], {i, l}]; m]; Table[a[n], {n, 1, 10}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *) CROSSREFS Cf. A214569, A206487, A214571, A215703. Sequence in context: A277408 A018369 A324178 * A306348 A078495 A161701 Adjacent sequences:  A214567 A214568 A214569 * A214571 A214572 A214573 KEYWORD nonn,hard,more AUTHOR Emeric Deutsch, Jul 28 2012 EXTENSIONS a(12)-a(16) from Alois P. Heinz, Sep 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 22:32 EDT 2020. Contains 337315 sequences. (Running on oeis4.)