login
A231701
Numbers > 100 with decimal digits in arithmetic progression mod 10.
1
109, 111, 123, 135, 147, 159, 161, 173, 185, 197, 208, 210, 222, 234, 246, 258, 260, 272, 284, 296, 307, 319, 321, 333, 345, 357, 369, 371, 383, 395, 406, 418, 420, 432, 444, 456, 468, 470, 482, 494, 505, 517, 529, 531, 543, 555, 567, 579, 581, 593, 604, 616
OFFSET
1,1
COMMENTS
This sequence contains straight-line numbers > 99 (A135643).
Each set of numbers from 10^n to 10^(n+1) contains 90 of these numbers. - T. D. Noe, Nov 12 2013
The sequence mod 100 has period 900, the sequence mod 90 has period 8100. - Paul Tek, Nov 14 2013
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Paul Tek)
EXAMPLE
(8,2,6,0,4,...) is an arithmetic progression mod 10, hence the number 82604 appears in this sequence.
MATHEMATICA
Select[Range[100, 10^3], Length[Union[Mod[Differences[IntegerDigits[#]], 10]]] <= 1 &] (* T. D. Noe, Nov 12 2013 *)
PROG
(PARI) a(n) = my(len=3+(n-1)\90, \
fs=10+((n-1)%90), \
f=fs\10, \
s=fs%10); \
return(sum(i=1, len, 10^(len-i)*((f+(i-1)*(s-f))%10)))
(Python)
from itertools import count, islice
def agen(): yield from (int("".join(str((s0+i*r)%10) for i in range(d))) for d in count(3) for s0 in range(1, 10) for r in range(-s0, 10-s0))
print(list(islice(agen(), 52))) # Michael S. Branicky, Aug 05 2022
CROSSREFS
Sequence in context: A253431 A253438 A263194 * A051046 A196667 A196673
KEYWORD
nonn,base
AUTHOR
Paul Tek, Nov 12 2013
STATUS
approved