This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A231704 Number of (n+1)X(2+1) 0..1 arrays with no element having a strict majority of its horizontal, vertical and antidiagonal neighbors equal to one 1
 17, 87, 387, 1903, 9352, 45126, 218976, 1063266, 5157832, 25029089, 121453256, 589322201, 2859633713, 13876023287, 67331513300, 326717840479, 1585356878661, 7692742049748, 37328056194113, 181129653079705, 878908640782024 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Column 2 of A231710 LINKS R. H. Hardin, Table of n, a(n) for n = 1..210 FORMULA Empirical: a(n) = 4*a(n-1) +a(n-2) +21*a(n-3) -31*a(n-4) +30*a(n-5) -95*a(n-6) +100*a(n-7) -67*a(n-8) +158*a(n-9) -270*a(n-10) -70*a(n-11) +104*a(n-12) +306*a(n-13) -26*a(n-14) -498*a(n-15) +168*a(n-16) +208*a(n-17) +256*a(n-18) -248*a(n-19) -168*a(n-20) +112*a(n-21) +8*a(n-22) +8*a(n-23) -32*a(n-24) +16*a(n-25) EXAMPLE Some solutions for n=6 ..0..0..0....1..0..1....0..0..1....0..0..0....1..0..0....0..0..0....1..0..0 ..0..0..0....0..0..0....1..0..0....0..0..1....1..0..0....0..1..0....1..0..0 ..0..1..0....1..0..1....1..0..0....0..0..1....1..0..0....0..1..0....0..0..0 ..0..0..0....0..0..0....1..0..1....0..1..0....1..0..0....0..0..0....1..0..0 ..1..0..1....1..0..0....0..0..0....1..0..0....0..0..0....0..0..1....0..0..0 ..0..0..0....0..0..1....1..0..0....0..0..0....0..0..0....1..0..1....0..1..1 ..1..0..1....0..0..1....0..0..0....1..1..1....1..0..1....0..0..0....0..0..0 CROSSREFS Sequence in context: A118533 A061679 A271567 * A033654 A276318 A282378 Adjacent sequences:  A231701 A231702 A231703 * A231705 A231706 A231707 KEYWORD nonn AUTHOR R. H. Hardin, Nov 12 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 07:17 EDT 2018. Contains 316378 sequences. (Running on oeis4.)