login
A370349
a(n) is the number of integer triples (x,y,z) satisfying: n + x + y + z >= 0, 49*n + 13*x - 11*y - 23*z >= 0, 49*n - 11*x - 23*y + 13*z >= 0, 49*n - 23*x + 13*y - 11*z >= 0, n + x + y + z == 0 (mod 12), 49*n + 13*x - 11*y - 23*z == 0 (mod 7).
1
1, 6, 18, 39, 72, 120, 185, 270, 378, 511, 672, 864, 1089, 1350, 1650, 1991, 2376, 2808, 3289, 3822, 4410, 5055, 5760, 6528, 7361, 8262, 9234, 10279, 11400, 12600, 13881, 15246, 16698, 18239, 19872, 21600, 23425, 25350, 27378, 29511, 31752, 34104, 36569, 39150, 41850, 44671, 47616, 50688, 53889, 57222
OFFSET
0,2
LINKS
T. Huber, N. Mayes, J. Opoku, and D. Ye, Ramanujan type congruences for quotients of Klein forms, Journal of Number Theory, 258, 281-333, (2024).
FORMULA
a(n) = floor((10 + 24*n + 18*n^2 + 4*n^3)/9).
a(n) = (A141530(n+2) - A102283(n))/9. - Stefano Spezia, Feb 17 2024
EXAMPLE
For n=0, the sole solution is (x,y,z) = (0,0,0) so a(0) = 1.
For n=1, the a(1)=6 solutions are (-1, -3, 3), (-2, 0, 1), (-3, 3, -1), (1, -2, 0), (0, 1, -2), (3, -1, -3).
MATHEMATICA
n = Range[0, 500, 2];
Floor[(10 + 24*n + 18*n^2 + 4*n^3)/9]
PROG
(Python)
def A370349(n): return ((n<<2)+10)*(n+1)**2//9 # Chai Wah Wu, Mar 11 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jeffery Opoku, Feb 16 2024
STATUS
approved