login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141530
a(n) = 4*n^3 - 6*n^2 + 1.
9
1, -1, 9, 55, 161, 351, 649, 1079, 1665, 2431, 3401, 4599, 6049, 7775, 9801, 12151, 14849, 17919, 21385, 25271, 29601, 34399, 39689, 45495, 51841, 58751, 66249, 74359, 83105, 92511, 102601, 113399, 124929, 137215, 150281, 164151, 178849, 194399, 210825, 228151
OFFSET
0,3
FORMULA
a(n) = (2*n-1)*(2*n^2 - 2*n - 1) = A060747(n)*A132209(n-1), n > 1. - R. J. Mathar, Feb 22 2009
G.f.: (1 - 5*x + 19*x^2 + 9*x^3)/(1-x)^4. - Jaume Oliver Lafont, Aug 30 2009
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with a(0)=1, a(1)=-1, a(2)=9, a(3)=55. - Harvey P. Dale, Nov 30 2011
E.g.f.: (1 - 2*x + 6*x^2 + 4*x^3)*exp(x). - G. C. Greubel, Mar 29 2021
MAPLE
A141530:= n-> 4*n^3 -6*n^2 +1; seq(A141530(n), n=0..50); # G. C. Greubel, Mar 29 2021
MATHEMATICA
Array[4*#^3-6*#^2+1&, 50, 0] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
LinearRecurrence[{4, -6, 4, -1}, {1, -1, 9, 55}, 50] (* Harvey P. Dale, Nov 30 2011 *)
PROG
(PARI) a(n)=4*n^3-6*n^2+1 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [4*n^3 -6*n^2 +1: n in [0..50]]; // G. C. Greubel, Mar 29 2021
(Sage) [4*n^3 -6*n^2 +1 for n in (0..50)] # G. C. Greubel, Mar 29 2021
(Python)
def A141530(n): return (m:=(n<<1)-1)*(n*(m-1)-1) # Chai Wah Wu, Mar 11 2024
CROSSREFS
See Librandi's comment in A078371.
Sequence in context: A145875 A299519 A068970 * A263478 A326249 A016269
KEYWORD
sign,less,easy
AUTHOR
Paul Curtz, Aug 12 2008
EXTENSIONS
Corrected, completed and edited, following an observation from Vincenzo Librandi, by M. F. Hasler, Feb 12 2009
Further edited by N. J. A. Sloane, Feb 13 2009
STATUS
approved