login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141528
Expansion of x/(1 + x + 41*x^2).
2
0, -1, 1, 40, -81, -1559, 4880, 59039, -259119, -2161480, 12785359, 75835321, -600035040, -2509213121, 27110649761, 75767088200, -1187303728401, -1919146887799, 50598599752240, 28086422647519, -2102629012489359, 951085683941080, 85256703828122639
OFFSET
1,4
FORMULA
a(n) = (-1)^(n-1)*(p^n - q^n)/(p-q), where p = (1 + sqrt(163)*i)/2, q = (1 - sqrt(163)*i)/2.
G.f.: x/(1 + x + 41*x^2). - Roger L. Bagula, Apr 18 2010
a(n) = -a(n-1) -41*a(n-2), with a(0) = 0, a(1) = -1. - G. C. Greubel, Mar 29 2021
MATHEMATICA
p:= (1 +Sqrt[163]*I)/2; q:= (1 -Sqrt[163]*I)/2; f[n_]:= (-1)^(n-1)*(p^n -q^n)/(p-q); Table[Simplify[f[n]], {n, 0, 30}] (* modified by G. C. Greubel, Mar 29 2021 *)
CoefficientList[Series[x/(1+x+41*x^2), {x, 0, 30}], x] (* Roger L. Bagula, Apr 18 2010; modified by G. C. Greubel, Mar 29 2021 *)
LinearRecurrence[{-1, -41}, {0, -1}, 30] (* G. C. Greubel, Mar 29 2021 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( x/(1+x+41*x^2) )); // G. C. Greubel, Mar 29 2021
(Sage)
def A141528_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( x/(1+x+41*x^2) ).list()
a=A141528_list(31); a[1:] # G. C. Greubel, Mar 29 2021
CROSSREFS
Sequence in context: A181458 A069070 A174052 * A160282 A243803 A203855
KEYWORD
sign
AUTHOR
Roger L. Bagula, Aug 11 2008
EXTENSIONS
Edited by G. C. Greubel, Mar 29 2021
STATUS
approved