login
A371173
Number of integer partitions of n with fewer parts than distinct divisors of parts.
14
0, 0, 1, 1, 1, 3, 2, 4, 6, 7, 11, 11, 17, 20, 26, 34, 44, 56, 67, 84, 102, 131, 156, 195, 232, 283, 346, 411, 506, 598, 721, 855, 1025, 1204, 1448, 1689, 2018, 2363, 2796, 3265, 3840, 4489, 5242, 6104, 7106, 8280, 9595, 11143, 12862, 14926, 17197, 19862, 22841
OFFSET
0,6
COMMENTS
The Heinz numbers of these partitions are given by A371168.
EXAMPLE
The partition (4,3,2) has 3 parts {2,3,4} and 4 distinct divisors of parts {1,2,3,4}, so is counted under a(9).
The a(2) = 1 through a(10) = 11 partitions:
(2) (3) (4) (5) (6) (7) (8) (9) (10)
(3,2) (4,2) (4,3) (4,4) (5,4) (6,4)
(4,1) (5,2) (5,3) (6,3) (7,3)
(6,1) (6,2) (7,2) (8,2)
(4,3,1) (8,1) (9,1)
(6,1,1) (4,3,2) (4,3,3)
(6,2,1) (5,3,2)
(5,4,1)
(6,2,2)
(6,3,1)
(8,1,1)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Length[#] < Length[Union@@Divisors/@#]&]], {n, 0, 30}]
CROSSREFS
The RHS is represented by A370820.
The version for equality is A371130 (ranks A370802), strict A371128.
For submultisets instead of parts on the LHS we get ranks A371166.
These partitions are ranked by A371168.
The opposite version is A371171, ranks A370348.
A000005 counts divisors.
A355731 counts choices of a divisor of each prime index, firsts A355732.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).
Sequence in context: A264905 A374790 A254052 * A105746 A166309 A349472
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 16 2024
STATUS
approved