login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370342
Expansion of g.f. A(x) satisfying 1 - 2*Sum_{n>=1} (x^n - 2*A(x))^n = Product_{k>=1} (1 - x^(2*k)) * (1 + x^k - 2*A(x))^2 / (1 + x^(2*k) - 2*A(x))^2.
4
1, 3, 12, 67, 440, 3080, 22339, 166958, 1279405, 10001248, 79431437, 639092704, 5198129852, 42671242080, 353076243089, 2941681342345, 24657465480317, 207789062496364, 1759398174141590, 14960914761950265, 127709100519220484, 1093951719479601709, 9400504633309640552, 81014452824634544835
OFFSET
1,2
COMMENTS
Compare to identity: 1 + 2*Sum_{n>=0} x^(n^2) = Product_{n>=1} (1 - x^(2*n)) * (1 + x^n)^2 / (1 + x^(2*n))^2.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) B(x) = Product_{k>=1} (1 - x^(2*k)) * (1 + x^k - 2*A(x))^2 / (1 + x^(2*k) - 2*A(x))^2.
(2) B(x) = 1 - 2*Sum_{n>=1} (x^n - 2*A(x))^n.
(3) B(x) = 3 - 2*Sum_{n>=0} x^(n^2) / (1 + 2*x^n*A(x))^(n+1).
a(n) ~ c * d^n / n^(3/2), where d = 9.19219694975902875836550... and c = 0.0708465407554627020767... - Vaclav Kotesovec, Feb 19 2024
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 12*x^3 + 67*x^4 + 440*x^5 + 3080*x^6 + 22339*x^7 + 166958*x^8 + 1279405*x^9 + 10001248*x^10 + 79431437*x^11 + 639092704*x^12 + ...
By definition, A = A(x) allows for the following expressions to equal
B(x) = 1 - 2*(x - 2*A) - 2*(x^2 - 2*A)^2 - 2*(x^3 - 2*A)^3 - 2*(x^4 - 2*A)^4 - 2*(x^5 - 2*A)^5 + ...
B(x) = (1 - x^2)*(1 + x - 2*A)^2/(1 + x^2 - 2*A)^2 * (1 - x^4)*(1 + x^2 - 2*A)^2/(1 + x^4 - 2*A)^2 * (1 - x^6)*(1 + x^3 - 2*A)^2/(1 + x^6 - 2*A)^2 * (1 - x^8)*(1 + x^4 - 2*A)^2/(1 + x^8 - 2*A)^2 * ...
where B(x) begins
B(x) = 1 + 2*x + 4*x^2 + 24*x^3 + 138*x^4 + 872*x^5 + 5976*x^6 + 43104*x^7 + 321860*x^8 + 2464986*x^9 + 19256068*x^10 + 152848436*x^11 + 1229294528*x^12 + ...
PROG
(PARI) {a(n) = my(A=[0, 1]); for(i=1, n, A=concat(A, 0);
A[#A] = -polcoeff( (1 - 2*sum(m=1, #A, (x^m - 2*Ser(A))^m ) - prod(m=1, #A, (1 - x^(2*m))*(1 + x^m - 2*Ser(A))^2/(1 + x^(2*m) - 2*Ser(A))^2))/4, #A-1)); H=A; A[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 16 2024
STATUS
approved