login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289539
Number of ways to choose a subspace U of GF(2)^n and then choose a subspace of U.
4
1, 3, 12, 66, 513, 5769, 95706, 2379348, 89759799, 5188919427, 463209471288, 64236626341974, 13903296824817117, 4713694025825766861, 2510421030027019810854, 2104931848782489253483752, 2783505220978001187684672531, 5813031971452642599096778614183
OFFSET
0,2
COMMENTS
A q-analog (q=2) of A000244.
FORMULA
a(n) = Sum_{k=0..n} A022166(n,k)*A006116(k).
a(n)/[n]_q! is the coefficient of x^n in the expansion of exp_q(x)^3 when q -> 2 and where exp_q(x) is the q-exponential function and [n]_q! is the q-factorial of n.
MATHEMATICA
nn = 20; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];
Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}] CoefficientList[ Series[eq[z]^3 /. q -> 2, {z, 0, nn}], z]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 12 2017
STATUS
approved