login
A289541
Number of subspaces of GF(2)^n with even dimension.
4
1, 1, 2, 8, 37, 187, 1304, 14606, 222379, 4141729, 107836478, 4466744372, 258501941713, 18779494904263, 1918824942497636, 311738238353418074, 71234670515346760951, 20564497734374127115501, 8363824677163863282113162, 5408580882753786431279731328
OFFSET
0,3
FORMULA
a(n)/[n]_q! is the coefficient of x^n in the expansion of exp_q(x)*cosh_q(x) when q->2, and cosh_q(x) = Sum_{n>=0} x^(2n)/[2n]_q!, and exp_q(x) is the q-exponential function, and [n]_q! is the q-factorial of n.
MATHEMATICA
nn = 22; eq[z_] := Sum[z^n/FunctionExpand[QFactorial[n, q]], {n, 0, nn}];
coshq[z_] := Sum[z^(2 n)/FunctionExpand[QFactorial[(2 n), q]], {n, 0, nn}];
Table[FunctionExpand[QFactorial[n, q]] /. q -> 2, {n, 0, nn}]*
CoefficientList[Series[coshq[z]*eq[z] /. q -> 2, {z, 0, nn}], z]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 14 2017
STATUS
approved