login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305547
Expansion of e.g.f. Product_{k>=1} (1 + (exp(x) - 1)^k/k!).
5
1, 1, 2, 8, 37, 182, 1039, 7149, 56382, 479220, 4280247, 40406984, 410453366, 4539623168, 54431372233, 695801259947, 9312538336475, 128985882874288, 1842668013046405, 27238267120063415, 419396473955088310, 6769168354222927254, 114837651830425810381, 2042782103293394499566
OFFSET
0,3
COMMENTS
Stirling transform of A007837.
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Stirling Transform
FORMULA
E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*(exp(x) - 1)^(j*k)/((j!)^k*k)).
a(n) = Sum_{k=0..n} Stirling2(n,k)*A007837(k).
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(add((-d)*(-d!)^(-k/d),
d=numtheory[divisors](k))*(n-1)!/(n-k)!*b(n-k), k=1..n))
end:
a:= n-> add(Stirling2(n, k)*b(k), k=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Jun 15 2018
MATHEMATICA
nmax = 23; CoefficientList[Series[Product[(1 + (Exp[x] - 1)^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Exp[Sum[Sum[(-1)^(k + 1) (Exp[x] - 1)^(j k)/((j!)^k k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
b[0] = 1; b[n_] := b[n] = Sum[(n - 1)!/(n - k)! DivisorSum[k, -# (-#!)^(-k/#) &] b[n - k], {k, 1, n}]; a[n_] := a[n] = Sum[StirlingS2[n, k] b[k], {k, 0, n}]; Table[a[n], {n, 0, 23}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 15 2018
STATUS
approved