OFFSET
0,1
COMMENTS
More precisely, let X:L(V) -> {0,1,2,...,n} be the random variable that assigns to each linear operator T on n-dimensional vector space V over F_2, the integer j in {0,1,2,...,n} such that the dimension of the null space of T = j. Then E(X) = 0.850179183...
FORMULA
Let A(x) = Sum_{n>=0} Product_{i>=n+1} (1-1/2^i)*x^n/A002884(n). Then A'(1) = 0.85017983...
MATHEMATICA
nn = 300; q := 2; A[x_] := Sum[1/(FunctionExpand[QFactorial[j, q]] (q - 1)^j q^Binomial[j, 2]) Product[1 - 1/q^i, {i, j + 1, \[Infinity]}] x^j, {j, 0, nn}]; RealDigits[
N[Normal[Series[D[A[x], x] /. x -> 1, {x, 0, nn}]], 100]][[1]]
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Geoffrey Critzer, Jul 10 2017
STATUS
approved