login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289543
Number of direct sum decompositions of GF(2)^n that do not contain any subspaces of dimension 1.
1
1, 0, 1, 1, 281, 9921, 16078337, 13596908545, 191426147495937, 3273234077014474753, 497324772153177747947521, 154709087482207635347155451905, 291534668371237082293312814285062145, 1534814232386517133354150755522868689240065, 39269743760371912650589750432327799926355436503041, 3338607968166762847572429548161284663670177988768356630529
OFFSET
0,5
COMMENTS
q-analog of A000296.
LINKS
David Ellerman, The number of direct-sum decompositions of a finite vector space, arXiv:1603.07619 [math.CO], 2016.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1
FORMULA
a(n)/A002884(n) is the coefficient of x^n in the expansion of exp(Sum_{k>1}x^k/A002884(k)).
MATHEMATICA
nn = 15; q := 2; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[QFactorial[n, q]]; G[z_] :=Sum[z^k/g[k], {k, 1, nn}]; Table[g[n], {n, 0, nn}] CoefficientList[
Series[Exp[G[z] - z], {z, 0, nn}], z]
CROSSREFS
Sequence in context: A108836 A295983 A264150 * A270964 A185710 A242982
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 19 2017
STATUS
approved