login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A287406
Number of direct sum decompositions of a finite vector space of n dimensions over GF(2) whose subspaces are all of distinct dimensions.
1
1, 1, 1, 29, 121, 10417, 20167393, 1405696961, 1671421144961, 34853495567335169, 18070618208072153366017, 76880583838185587571686401, 5835812465544660559691588302849, 6474896789559157455730381208091095041, 143196455096491413680184647037773197755801601, 76671942287512076984565827384061983641627409659183105
OFFSET
0,4
COMMENTS
q analog of A007837.
LINKS
David Ellerman, The number of direct-sum decompositions of a finite vector space, arXiv:1603.07619 [math.CO], 2016.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1
FORMULA
Sum_{n>=0}a(n)u^n/g(n) = Product_{r>=1}1 + u^r/g(r) where g(n) = A002884(n).
MATHEMATICA
nn = 15; g[n_] := QFactorial[n, q]*(q - 1)^n*q^Binomial[n, 2] /. q -> 2;
Table[g[n], {n, 0, nn}] CoefficientList[Series[Product[1 + u^r/g[r], {r, 1, nn}], {u, 0, nn}], u]
CROSSREFS
Sequence in context: A330811 A118614 A033660 * A233114 A264672 A157145
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, May 24 2017
STATUS
approved