OFFSET
0,1
COMMENTS
a(n) = x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of x^3 - 35*x^2 + 147*x - 49, x1 = 7*(cot(1*Pi/7))^2, x2 = 7*(cot(2*Pi/7))^2, x3 = 7*(cot(4*Pi/7))^2.
LINKS
Colin Barker, Table of n, a(n) for n = 0..650
Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2Pi/7, J. Integer Seq., 12 (2009), Article 09.8.5.
Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6.
Index entries for linear recurrences with constant coefficients, signature (35,-147,49).
FORMULA
a(n) = 35*a(n-1) - 147*a(n-2) + 49*a(n-3), a(0) = 3, a(1) = 35, a(2) = 931.
G.f.: (3 - 7*x)*(1 - 21*x) / (1 - 35*x + 147*x^2 - 49*x^3). - Colin Barker, May 26 2017
MATHEMATICA
LinearRecurrence[{35, -147, 49}, {3, 35, 931}, 30] (* Harvey P. Dale, Mar 15 2018 *)
PROG
(PARI) Vec((3 - 7*x)*(1 - 21*x) / (1 - 35*x + 147*x^2 - 49*x^3) + O(x^30)) \\ Colin Barker, May 26 2017
(PARI) polsym(x^3 - 35*x^2 + 147*x - 49, 20) \\ Joerg Arndt, May 26 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Kai Wang, May 24 2017
STATUS
approved