The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A107713 Convolution of 2^n*n! and n!. 6
 1, 3, 12, 66, 484, 4536, 52128, 709776, 11153376, 198339840, 3932962560, 85976743680, 2053285148160, 53173906652160, 1483987541299200, 44396218792396800, 1417294759310438400, 48088097391133900800, 1728013936221838540800, 65558270633421791232000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS E.g.f. is int( 1/((1-t)(1-2*(x+t))), t=0..x). LINKS FORMULA a(n) = Sum_{k=0..n} 2^k * k! * (n-k)!. E.g.f. (for offset 1): (log(1-x)+log(1-2*x))/(-3+2*x). a(n) ~ n! * 2^n * (1 + 1/(2*n) + 1/(2*n^2) + 5/(4*n^3) + 17/(4*n^4) + 37/(2*n^5) + 98/n^6 + 4885/(8*n^7) + 34969/(8*n^8) + 70657/(2*n^9) + 636151/(2*n^10) + ...). - Vaclav Kotesovec, Aug 08 2019, extended Dec 07 2020 EXAMPLE a(4) = 484 = 4! 0! + 2 3! 1! + 2^2 2! 2! + 2^3 1! 3! + 2^4 0! 4! MAPLE f:=proc(n) local k; add(2^k*k!*(n-k)!, k=0..n); end: MATHEMATICA Rest[Range[0, 20]! CoefficientList[Series[((Log[1 - x] + Log[1 - 2 x]))/(-3 + 2 x), {x, 0, 20}], x]] (* Vincenzo Librandi, Jul 13 2015 *) Table[Sum[2^k * k! * (n-k)!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 08 2019 *) CROSSREFS Cf. A003149, A108953, A110467. Sequence in context: A009362 A123227 A196556 * A289539 A256125 A337059 Adjacent sequences:  A107710 A107711 A107712 * A107714 A107715 A107716 KEYWORD nonn AUTHOR Mike Zabrocki, Jun 10 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 07:56 EDT 2021. Contains 345416 sequences. (Running on oeis4.)