login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A009362
Expansion of log(1 + sinh(x)/exp(x)).
2
0, 1, -3, 12, -66, 480, -4368, 47712, -608016, 8855040, -145083648, 2641216512, -52891055616, 1155444326400, -27344999497728, 696933753434112, -19031293222127616, 554336947975618560, -17155693983744196608
OFFSET
0,3
FORMULA
a(n) = -Sum_{k>0} (-2*k)^n/3^k/k = -(-2)^n*polylog(-n+1, 1/3), n>0. - Vladeta Jovovic, Sep 30 2003
a(n) = -(-1)^n*Sum_{k=0..n-1} 3^k*Sum_{j=0..k} (-1)^j*(k-j)^n*C(n,j) for n>0. a(n) = -(-1)^n*Sum_{k=0..n-1} 3^k*A008292(n-1,k) for n>0, where A008292 are the Eulerian numbers. - Paul D. Hanna, Mar 29 2006
a(n) ~ (n-1)! * (-1)^(n+1) * (2/log(3))^n. - Vaclav Kotesovec, Jan 23 2015
MATHEMATICA
Log[ 1+Sinh[ x ]/Exp[ x ] ]
CoefficientList[Series[Log[1 + Sinh[x]/E^x], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 23 2015 *)
PROG
(PARI) a(n)=-(-1)^n*sum(k=0, n-1, 3^k*sum(j=0, k, (-1)^j*(k-j)^(n-1)*binomial(n, j))) \\ Paul D. Hanna, Mar 29 2006
CROSSREFS
Cf. A008292 (Eulerian numbers).
Sequence in context: A080599 A349581 A120575 * A123227 A196556 A107713
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved