login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370339
Expansion of e.g.f. A(x) satisfying A(x) = 1 / Product_{n>=1} cos(x^n*A(x)).
2
1, 1, 29, 2221, 350489, 93691801, 38572439861, 22632410010757, 17988817024580273, 18611994535647105841, 24319398199016890981325, 39169580455278059081821021, 76249305758850982201026156233, 176490984462982016166878127093961, 479115505330137936930565874363849189
OFFSET
0,3
COMMENTS
A related identity is sin(x)/x = Product_{n>=1} cos(x/2^n).
Motivated by the fixed point (Pi/2) = 1 / Product_{n>=1} cos((Pi/2)*(1/2)^n), from a formula added by Ilya Gutkovskiy to A000796 on Aug 07 2016.
The radius of convergence of e.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! is 1/2, and A(x) at x = 1/2 converges to A(1/2) = Pi/2.
A related identity is (Pi/2) = 1 / (Sum_{n>=1} tan((Pi/2)/2^n) / 2^n).
lim_{n->oo} ( a(n)/(2*n)! )^(1/n) = 4.
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n) * x^(2*n)/(2*n)! satisfies the following formulas.
(1) A(x) = 1 / Product_{n>=1} cos(x^n*A(x)).
(2) log(A(x)) = Sum_{n>=1} A000182(n) * A(x)^(2*n) * x^(2*n)/((1-x^(2*n))*(2*n)!), where A000182 are the tangent numbers.
(3) A(1/2) = Sum_{n>=0} a(n)/((2*n)!*4^n) = Pi/2.
a(n) ~ c * 16^n * (n-1)!^2, where c = 0.18032419917017939824645056... - Vaclav Kotesovec, Feb 29 2024
EXAMPLE
G.f.: A(x) = 1 + x^2/2! + 29*x^4/4! + 2221*x^6/6! + 350489*x^8/8! + 93691801*x^10/10! + 38572439861*x^12/12! + 22632410010757*x^14/14! + ...
where
A(x) = 1/(cos(x*A(x)) * cos(x^2*A(x)) * cos(x^3*A(x)) * cos(x^4*A(x)) * ...).
RELATED SERIES.
log(A(x)) = x^2/2! + 26*x^4/4! + 1816*x^6/6! + 270416*x^8/8! + 69316096*x^10/10! + 27774564608*x^12/12! + 15980811489280*x^14/14! + ...
where the logarithm of A(x) may be written as
log(A(x)) = A(x)^2*x^2/((1-x^2)*2!) + 2*A(x)^4*x^4/((1-x^4)*4!) + 16*A(x)^6*x^6/((1-x^6)*6!) + 272*A(x)^8*x^8/((1-x^8)*8!) + ...
in which the coefficients (A000182) are taken from the series for
log(1/cos(x)) = x^2/2! + 2*x^4/4! + 16*x^6/6! + 272*x^8/8! + 7936*x^10/10! + 353792*x^12/12! + ... + A000182(n)*x^(2*n)/(2*n)! + ...
SPECIFIC VALUES.
A(1/2) = Pi/2 = 1.570796326794896...
A(1/3) = 1.0767048225677796985699375012927448414632213680461...
A(1/4) = 1.0368864417986664841903383770323439256754564546659...
A(1/5) = 1.02215603157639512180398586667...
A(1/6) = 1.01489300419904897880469070874...
A(1/8) = 1.00811981394079053527600680239...
A(1/16) = 1.00197174861491784447864089136...
A(2/5) = 1.13484213008026434880482685706...
A(3/8) = 1.10876438339573451443889475275...
A(3/16) = 1.01922045277822853110544463913...
A(5/16) = 1.06434696931941878223868419402...
A(7/16) = 1.19092375254926233355508101258...
A(15/32) = 1.27051040050590151234289537354...
A(31/64) = 1.34043967392075568993521474964...
A(63/128) = 1.39800851071166904455009579306...
A(511/1024) = 1.5036464973982065250844881723...
PROG
(PARI) {a(n) = my(A=1); for(m=1, n+1, A=truncate(A);
A = 1 / prod(k=1, m, cos(x^k*A +O(x^(2*m+1))) ) ; ); (2*n)!*polcoeff(A, 2*n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A084223 A138755 A265445 * A316333 A377218 A281440
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 29 2024
STATUS
approved