login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. A(x) satisfying A(x) = 1 / Product_{n>=1} cos(x^n*A(x)).
2

%I #22 Mar 02 2024 03:22:07

%S 1,1,29,2221,350489,93691801,38572439861,22632410010757,

%T 17988817024580273,18611994535647105841,24319398199016890981325,

%U 39169580455278059081821021,76249305758850982201026156233,176490984462982016166878127093961,479115505330137936930565874363849189

%N Expansion of e.g.f. A(x) satisfying A(x) = 1 / Product_{n>=1} cos(x^n*A(x)).

%C A related identity is sin(x)/x = Product_{n>=1} cos(x/2^n).

%C Motivated by the fixed point (Pi/2) = 1 / Product_{n>=1} cos((Pi/2)*(1/2)^n), from a formula added by _Ilya Gutkovskiy_ to A000796 on Aug 07 2016.

%C The radius of convergence of e.g.f. A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! is 1/2, and A(x) at x = 1/2 converges to A(1/2) = Pi/2.

%C A related identity is (Pi/2) = 1 / (Sum_{n>=1} tan((Pi/2)/2^n) / 2^n).

%C lim_{n->oo} ( a(n)/(2*n)! )^(1/n) = 4.

%H Paul D. Hanna, <a href="/A370339/b370339.txt">Table of n, a(n) for n = 0..201</a>

%F E.g.f. A(x) = Sum_{n>=0} a(n) * x^(2*n)/(2*n)! satisfies the following formulas.

%F (1) A(x) = 1 / Product_{n>=1} cos(x^n*A(x)).

%F (2) log(A(x)) = Sum_{n>=1} A000182(n) * A(x)^(2*n) * x^(2*n)/((1-x^(2*n))*(2*n)!), where A000182 are the tangent numbers.

%F (3) A(1/2) = Sum_{n>=0} a(n)/((2*n)!*4^n) = Pi/2.

%F a(n) ~ c * 16^n * (n-1)!^2, where c = 0.18032419917017939824645056... - _Vaclav Kotesovec_, Feb 29 2024

%e G.f.: A(x) = 1 + x^2/2! + 29*x^4/4! + 2221*x^6/6! + 350489*x^8/8! + 93691801*x^10/10! + 38572439861*x^12/12! + 22632410010757*x^14/14! + ...

%e where

%e A(x) = 1/(cos(x*A(x)) * cos(x^2*A(x)) * cos(x^3*A(x)) * cos(x^4*A(x)) * ...).

%e RELATED SERIES.

%e log(A(x)) = x^2/2! + 26*x^4/4! + 1816*x^6/6! + 270416*x^8/8! + 69316096*x^10/10! + 27774564608*x^12/12! + 15980811489280*x^14/14! + ...

%e where the logarithm of A(x) may be written as

%e log(A(x)) = A(x)^2*x^2/((1-x^2)*2!) + 2*A(x)^4*x^4/((1-x^4)*4!) + 16*A(x)^6*x^6/((1-x^6)*6!) + 272*A(x)^8*x^8/((1-x^8)*8!) + ...

%e in which the coefficients (A000182) are taken from the series for

%e log(1/cos(x)) = x^2/2! + 2*x^4/4! + 16*x^6/6! + 272*x^8/8! + 7936*x^10/10! + 353792*x^12/12! + ... + A000182(n)*x^(2*n)/(2*n)! + ...

%e SPECIFIC VALUES.

%e A(1/2) = Pi/2 = 1.570796326794896...

%e A(1/3) = 1.0767048225677796985699375012927448414632213680461...

%e A(1/4) = 1.0368864417986664841903383770323439256754564546659...

%e A(1/5) = 1.02215603157639512180398586667...

%e A(1/6) = 1.01489300419904897880469070874...

%e A(1/8) = 1.00811981394079053527600680239...

%e A(1/16) = 1.00197174861491784447864089136...

%e A(2/5) = 1.13484213008026434880482685706...

%e A(3/8) = 1.10876438339573451443889475275...

%e A(3/16) = 1.01922045277822853110544463913...

%e A(5/16) = 1.06434696931941878223868419402...

%e A(7/16) = 1.19092375254926233355508101258...

%e A(15/32) = 1.27051040050590151234289537354...

%e A(31/64) = 1.34043967392075568993521474964...

%e A(63/128) = 1.39800851071166904455009579306...

%e A(511/1024) = 1.5036464973982065250844881723...

%o (PARI) {a(n) = my(A=1); for(m=1,n+1, A=truncate(A);

%o A = 1 / prod(k=1,m, cos(x^k*A +O(x^(2*m+1))) ) ;); (2*n)!*polcoeff(A,2*n)}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A370436, A000182.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 29 2024